LOWER HUDSON RIVER BASIN SUMMIT STREET LAKE DAM COLUMBIA COUNTY, NEW YORK INVENTORY NO. N.Y. 847 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM APPROVED FOR MULLIC RELEASE; DISTRIBUTION UNLIMITED NEW YORK DISTRICT CORPS OF ENGINEERS MARCH, 1981 UTIC FILE CORY This report provides information and analysis on the physical condition of the dam as at the report lare. Information and analysis are based on visual daspection of the dam by the performing organization. Visual inspection of this dam and engineering analyses which have been . performed revealed that several serious deficiencies exist on this structure. Displaced stones have created a number of voids on the downstream face. While most of these voids were about one cubic foot in size, two were substantially larger. There was leakage through and beneath the dam especially in the vicinity of these voids. The slate stones which compose this structure were weathered and in some spots could be broken off by hand. Using the Corp's of Engineer's Screening criteria for the initial review of spillway adequacy, it has been determined that the structure would be overtopped by all storms exceeding 23% of the Probable Maximum Flood (PMF). Stability analyses performed for this structure indicate that it would not be capable of withstanding overtopping. Since an overtopping failure would significantly increase the hazard to loss of life downstream, the spillway is adjudged as "seriously inadequate" and the dam is assessed as "unsafe, non-emergency". Immediately upon receipt of this notification, a system for providing around-the-clock surveillance of the dam during periods of unusually heavy precipitation should be developed and implemented. An emergency action plan for the notification of downstream residents should also be developed. It is recommended that within 3 months of the date of notification of the owner, investigations into the deficiencies on this structure should be commenced. Studies of the stability related deficiencies (including the voids and the leakage) are necessary. Additional hydrologic/hydraulic investigations are also needed to find a method to correct the spillway inadequacy. Remedial measures deemed necessary as a result of these investigations should be completed within 18 months. Other deficiencies noted on this structure should also be corrected within 18 months. Among the actions required are repairing deteriorated concrete on the spillway crest and removing brush and vines growing on the dam. | Acces | ssien For | |-------|----------------| | NT1: | GRA&T | | DTin | TAB | | Unan | io, finded 🔲 | | Just | fication | | | | | By | | | Distr | ibation/ | | Avai | lability Codes | | | Avail and/or | | Dist | Special | | 1 | | | 14 | | | | , , | #### **PREFACE** This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies. In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected. Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential. PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM SUMMIT STREET DAM I.D. No. NY 847 # 228A-1074 LOWER HUDSON RIVER BASIN COLUMBIA COUNTY, NEW YORK ## TABLE OF CONTENTS | | | PAGE NO. | |-----|--------------------------------------|----------| | - | ASSESSMENT | | | - | OVERVIEW PHOTOGRAPH | - | | 1 | PROJECT INFORMATION | 1 | | 1.1 | GENERAL | 1 | | 1.2 | DESCRIPTION OF PROJECT | 1 | | 1.3 | PERTINENT DATA | 2 | | 2 | ENGINEERING DATA | 4 | | 2.1 | GEOTECHNICAL DATA | 4 | | 2.2 | DESIGN RECORDS | 4 | | 2.3 | CONSTRUCTION RECORDS | 4 | | 2.4 | OPERATION RECORDS | 4 | | 2.5 | EVALUATION | 4 | | 3 | VISUAL INSPECTION | 5 | | 3.1 | FINDINGS | 5 | | 3.2 | EVALUATION OF OBSERVATIONS | 5 | | 4 | OPERATION AND MAINTENANCE PROCEDURES | 6 | | 4.1 | PROCEDURES | 6 | | 4.2 | MAINTENANCE OF DAM | 6 | | 4.3 | WARNING SYSTEM IN EFFECT | 6 | | 4.4 | EVALUATION | 6 | | | | PAGE NO. | |-----|--|----------| | | 5 HYDROLOGIC/HYDRAULIC | 7 | | | 5.1 DRAINAGE AREA CHARACTERISTICS | 7 | | | 5.2 ANALYSIS CRITERIA | 7 | | | 5.3 SPILLWAY CAPACITY | 7 | | | 5.4 RESERVOIR CAPACITY | 7 | | | 5.5 FLOODS OF RECORD | 8 | | | 5.6 OVERTOPPING POTENTIAL | 8 | | | 5.7 EVALUATION | 8 | | | 6 STRUCTURAL STABILITY | 9 | | | 6.1 EVALUATION OF STRUCTURAL STABILITY | 9 | | | 7 ASSESSMENT/RECOMMENDATIONS | 11 | | | 7.1 ASSESSMENT | 11 | | | 7.2 RECOMMENDED MEASURES | 11 | | APP | ENDIX | | | Α. | PHOTOGRAPHS | | | В. | VISUAL INSPECTION CHECKLIST | | | c. | HYDROLOGIC/HYDRAULIC | | | ٥. | STRUCTURAL STABILITY | | | _ | DEFEDENCES | | F. DRAWINGS & RELATED INFORMATION # PHASE I REPORT NATIONAL DAM SAFETY PROGRAM Name of Dam: Summit Street Dam (I.D. No. NY 847) State Located: New York County: Columbia Watershed: Lower Hudson River Basin Stream: Agawanauck Creek Date of Inspection: October 29, 1980. #### **ASSESSMENT** Visual inspection of this dam and engineering analyses which have been performed revealed that several serious deficiencies exist on this structure. Displaced stones have created a number of voids on the downstream face. While most of these voids were about one cubic foot in size, two were substantially larger. There was leakage through and beneath the dam especially in the vicinity of these voids. The slate stones which compose this structure were weathered and in some spots could be broken off by hand. Using the Corp's of Engineer's Screening criteria for the initial review of spillway adequacy, it has been determined that the structure would be overtopped by all storms exceeding 23% of the Probable Maximum Flood (PMF). Stability analyses performed for this structure indicate that it would not be capable of withstanding overtopping. Since an overtopping failure would significantly increase the hazard to loss of life downstream, the spillway is adjudged as "seriously inadequate" and the dam is assessed as "unsafe, non-emergency". Immediately upon receipt of this notification, a system for providing around-the-clock surveillance of the dam during periods of unusually heavy precipitation should be developed and implemented. An emergency action plan for the notification of downstream residents should also be developed. It is recommended that within 3 months of the date of notification of the owner, investigations into the deficiencies on this structure should be commenced. Studies of the stability related deficiencies (including the voids and the leakage) are necessary. Additional hydrologic/hydraulic investigations are also needed to find a method to correct the spillway inadequacy. Remedial measures deemed necessary as a result of these investigations should be completed within 18 months. Other deficiencies noted on this structure should also be corrected within 18 months. Among the actions required are repairing deteriorated concrete on the spillway crest and removing brush and vines growing on the dam. Donge Koric George Koch Chief, Dam Safety Section New York State Department of Environmental Conservation NY License No. 45937 pproved By: Col. W.M. Smith Jr. New York District Engineer PER MEN THE BUT HERE HE ate: OVERVIEW SUMMIT STREET DAM I,D, No, NY 847 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM SUMMIT STREET DAM I.D. No. NY 847 # 228A-1074 LOWER HUDSON RIVER BASIN COLUMBIA COUNTY, NEW YORK #### SECTION 1: PROJECT INFORMATION #### 1.1 GENERAL The Phase I inspection reported herein was authorized by the Department of the Army, New York District, Corps of Engineers, to fulfill the requirements of the National Dam Inspection Act, Public Law 92-367. b. Purpose of Inspection This inspection was conducted to evaluate the existing conditions of the dam, to identify deficiencies and hazardous conditions, to
determine if these deficiencies constitute hazards to life and property, and to recommend remedial measures where required. #### 1.2 DESCRIPTION OF PROJECT a. Description of Dam The Summit Street Dam is laid up stone dam with a concrete crest forming on an overflow spillway section. A sluice at the right end of the dam controlled by stop logs may act as a low level outlet. The spillway section is 134 feet long and 21 feet high. It extends from a laid up stone abutment at the left end to a rock outcrop at its right end. The crest on this section is 13 feet wide. The stop log sluice entrance is in a rock cut. It is 3,3 feet wide and has vertical concrete sidewalls. There are stop logs on the outlet end of the sluice. A total of 17.2 feet of stop logs can be placed in this sluice. <u>b. Location</u> This dam is located on the Agawamuck Creek in the Village of Philmont. It is approximately 1000 feet south of New York State Route 217. c. Size Classification The dam is 21 feet high and has a maximum storage capacity of 264 acrefeet. Therefore, the dam is in the small size category as defined by the "Recommended Guidelines for Safety Inspection of Dams." Hazard Classification This dam is classified as "high" hazard due to the presence of 10 to 15 houses and mobile homes located approximately 1 mile downstream of the dam near the hamlet of Mellenville. e. Ownership The dam is owned by the Village of Philmont. Mr. Clinton Mossman is Mayor of the Village. The address of the Municipal Building is P.Q. Box 00, Philmont, New York, 12565. The Village Clerk's office phone number is (518) 672-7032. f. Purpose of Dam This dam was constructed about the year 1860 by the High Rock Knitting Company, who used it for industrial purposes. The Village of Philmont assumed ownership of the structure in 1975. The impoundment is now used for recreational purposes. g. Design and Construction History This dam was constructed about the year 1860. No design or construction records for the dam could be located. Normal Operation There are no prescribed operating procedures for this structure. #### 1.3 PERTINENT DATA | a. Drainage Area (sq. mi.) | 21,16 | |--|--------------------------| | <u>b. Discharge at Dam</u> (cfs)Spillway at maximum high waterLow level outlet at Spillway Crest | 5413.
385. | | <pre>c. Elevation (USGS Datum) Top of Dam Spillway Crest Invert of Low level outlet channel</pre> | 500,25
495,
480,55 | | d. Reservoir-Surface Area (acres) Top of Dam Spillway Crest | 24,2
16,5 | | e. Storage Capacity (acre-feet) Top of Dam Spillway Crest | 264 .
178 | Type: Laid up stone dam with central overflow spillway section; laid up stone forms left abutment; bedrock outcrop forms right abutment, | Dam length (ft) | 160. | |------------------|------| | Crest width (ft) | 13. | Spillway Type: Center section of dam; laid up stone with concrete on crest; slope of concrete on crest 1 vertical on 7 horizontal; spillway crest length is 134 feet. h. Stop Log Sluice Type: Entrance cut through bedrock with vertical concrete walls; stop logs at downstream end of sluice; overall width is 3.3 feet and there are provisions for up to 17.2 feet of stop logs. #### SECTION 2: ENGINEERING DATA #### 2.1 GEOTECHNICAL DATA a. Geology The Summit Street Dam is located in the Taconic Section of the New England Uplands physiographic province of New York State. The bedrock in this area is generally limestone, sandstone and slate altered and broken by the folding and faulting which have characterized the geologic history of this area. Outcrops in the vicinity of the dam consisted of severely folded slates. A review of the "Brittle Structures Map of the State of New York" indicated that there is a high angle reverse fault approximately three quaters of a mile to the west of this dam. Surficial soils in the area are the results of galciations during the Cenozic Era, the last of which was the Wisconsin glaciation. b. Subsurface Investigations No records of any subsurface investigations performed for this structure could be located. #### 2.2 DESIGN RECORDS There were no design records available for this structure. #### 2.3 CONSTRUCTION RECORDS There were no construction records available for this structure. The dam was built about 1860 by the High Rock Knitting Company. #### 2.4 OPERATION RECORDS No operation records are maintained on this structure. #### 2.5 EVALUATION Data available for the preparation of this report was extremely limited. Information used was obtained from the Department of Environmental Conservation files and from measurements made at the time of the inspection. #### SECTION 3: VISUAL INSPECTION #### 3.1 FINDINGS a. General Visual inspection of the Summit Street Dam was conducted on October 29, 1980. The weather was overcast and the temperature was in the mid-forties. The water level at the time of the inspection was 2.75 feet below the spillway crest. b. Dam-Spillway Section Visual inspection revealed several deficiencies on this structure. The most serious of these deficiencies were voids created by displaced stones on the downstream face. Most of these voids were relatively small (about 1 foot high by 1 foot wide by 1 foot deep). There was a larger void at the downstream toe near the left end of the structure. This void was approximately 3 feet high by 5 feet wide by 4 feet deep. A void of approximately the same size was noted on the left abutment wall. Leakage through and beneath the structure was also observed. In several areas, the leakage was emerging from the voids on the downstream face. Water was also exiting along the interface between the dam and bedrock at the right end of the structure. The stones which make up this dam were predominantly flat pieces of slate. The exterior stones on the downstream face were weathered to such an extent that it was possible to break pieces off using your hands. The bedrock in this area was highly weathered. The concrete on the crest was cracked and deteriorated. There was some concrete removal along each of the joints across the crest. At one joint, the area of deteriorated concrete extended for about 5 feet with a maximum depth of removal of up to 6 inches. Brush and vines were growing both on the downstream face and along the crest. There were several trees which were growing through the laid up stone abutment at the left end of the dam. c. Stop Log Sluice Structure The stop log sluice structure at the right end of the dam was in satisfactory condition. #### 3.2 EVALUATION OF OBSERVATIONS Visual observations revealed several deficiencies on this structure. The following items were noted: - 1. Voids created by displaced stones on the downstream face. Voids ranged in size from 1 cubic foot up to 60 cubic feet; - 2. Leakage through and beneath the structure; - 3. Weathered stones which compose the dam that can be broken off by hand, - 4. Deteriorated concrete on the crest of the dam. - 5. Brush and vines growing on the dam. ~ #### SECTION 4: OPERATION AND MAINTENANCE PROCEDURES #### 4.1 PROCEDURES There are no prescribed operating procedures for this dam. # 4.2 MAINTENANCE OF DAM There is no established maintenance plan for the dam. #### 4.3 WARNING SYSTEM IN EFFECT No apparent warning system for evacuation of downstream residents is present. #### 4.4 EVALUATION The operation and maintenance procedures on this dam are not satisfactory. The deficiencies noted in section 3 indicate that increased maintenance efforts are needed. #### SECTION 5: HYDROLOGIC/HYDRAULIC #### 5.1 DRAINAGE AREA CHARACATERISTICS The delineation of the contributing watershed to this dam is indicated on the map titled "Drainage Area Map - Summit Street Dam" (Appendix C). The irregular but somewhat rectangular-shaped, north-south oriented watershed of some 21.16 square miles (13,545 acres) is comprised of relatively underdeveloped lands consisting of open cropland, fields and pastures, and forests. Slopes along the primary drainage paths, including the Agawamuck Creek main stem, are flat (less than 3%) to moderate (3% to 8%). However, the adjacent hillsides have steep slopes (greater than 8%). The hills forming the watershed divide range from 300 feet to 1000 feet in elevation above the reservoir. The only significant body of water within the watershed is named Philmont Reservoir and is located on a tributary to the Agawamuck Creek main stem. The Taconic State Parkway traverses the middle of subbasin 4 and then somewhat parallels the Agawamuck Creek main stem along the westerly divide of the watershed. #### 5.2 ANALYSIS CRITERIA No hydrologic/hydraulic information was available regarding the original design for this dam. Therefore, the analysis of the floodwater retarding capability of the dam was performed using the Corps of Engineers HEC-1 computer program, Dam Safety version, and data provided by the report titled "Lower Hudson River Basin Hydrologic Flood Routing Model" (Appendix E, ref. 4). The computer program develops inflow hydrographs using the "Snyder Unit Hydrograph" method for each of the subbasins, stream channel routs and combines hydrographs at selected stream junctions, and then reservoir routs the resulting hydrograph using the "Modified Puls" flood routing procedure. The spillway design flood selected for analysis was the Probable Maximum Flood (PMF), in accordance with the Recommended Guidelines of the U.S. Army Corps of Engineers. The PMF event is that hypothetical storm event resulting from the most critical combination of rainfall, minimum soil retention, and direct runoff to a specific site that is considered reasonably possible for a particular watershed. #### 5.3 SPILLWAY CAPACITY The single, 134 foot long, ungated spillway extends across the entire dam. It was analyzed for weir flow using a discharge coefficient, C, varying
from 2.7 to 3.0. The computed discharge capacity of the spillway is 5413 cfs. The flood analysis performed for this dam indicates that the spillway does not have sufficient capacity for discharging one-half the PMF. For this storm event, the peak inflow and peak outflow is 11,696 cfs. The PMF peak inflow and peak outflow is 23,587 cfs. #### 5.4 RESERVOIR CAPACITY The normal water surface is regulated by the stop log sluice located at the right abutment. Using a 1939 reference and the USGS mapping of the reservoir area, the impounded capacity at elevation 495 (USGS) is 178 acre-feet which is equivalent to a direct runoff depth of 0.08 inches over the watershed. The total storage capacity is 264 acre-feet. #### 5.5 FLOODS OF RECORD The date of occurrence of the maximum flood at the dam site is not known. However, a discharge of 3670 cfs was recorded on the Agawamuck Creek main stem near Harlemville on July 5, 1974. This location had a contributing watershed of 5.28 square miles and is near the confluence of subbasins 1 and 2. This large discharge if transposed directly to the dam would have had a flow depth over the spillway of approximately 4.1 feet. #### 5.6 OVERTOPPING POTENTIAL Records indicate the reservoir has reached high levels whereby flow has overtopped the perimeter and flowed into the Village of Philmont. The spillway was assessed in 1939 as being inadequate. Analysis using the PMF and one-half the PMF storm events indicates that the spillway does not have sufficient discharge caracity. The computed depths of overtopping for these two events are 3.71 feet and 1.65 feet respectively. All storm events exceeding 23% of the PMF will result in the dam being overtopped. #### 5.7 EVALUATION The spillway does not have sufficient capacity to discharge the peak outflow from one-half the PMF. With the dam composition being that of a laid-up stone structure, the downstream bedrock channel being steep and confining, and residences and mobile homes placed adjacent to the stream channel in the hamlet of Mellenville, it has been determined that failure of the dam from overtopping would significantly increase the hazard to loss of life downstream of the dam from that which would exist just prior to an overtopping failure. Therefore, the spillway is adjudged as "seriously inadequate" and the dam is assessed as "unsafe, non-emergency". #### SECTION 6: STRUCTURAL STABILITY #### 6.1 EVALUATION OF STRUCTURAL STABILITY a. Visual Observations Visual observations revealed that there are several structural problems on this dam. Displaced stones have created a number of voids on the downstream face. Most of these voids are about one cubic foot in size but there are two which are substantially larger. Leakage through and beneath the dam was noted at the downstream face. There was deteriorated concrete on the crest of the dam. The stones which compose this structure are predominantly weathered slate. There are places where it is possible to break the stones off with your hands. b. Data Review and Stability Evaluation No plans or construction information could be located for this structure. The information used for the stability evaluation was obtained from a 1916 Dam Inspection Report and from measurements made at the time of the inspection. Since this is a laid-up stone structure, it was assumed that the dam foundation was fully drained and that no uplift pressures would be developed. Safety factors against sliding were computed for each condition analyzed. No overturning analysis was performed, because it would be meaningless for a laid up stone structure. The results of the analyses are as follows: | Case | Factor of Safety vs. Sliding | |---|------------------------------| | a. Normal Conditions, Reservoir
level 3 feet below spillway crest | 1.70 | | b. Same as case a. plus ice load of 5,000 lb./ft. | 1.26 | | c. Flood of record; water surface4.1 feet above spillway crest | 1.01 | | d. 1/2 PMF; water surface 6.9
feet above spillway crest | 0.87 | | e. PMF; water surface 9.0 feet above spillway crest | 0.78 | | f. Normal conditions with seismic coefficient of 0.10 | 1,21 | The stability analyses indicates that the safety factors against sliding are less than desireable for all conditions analyzed. The safety factors fall to critical levels under flood flow conditions. The computed safety factors are for a failure of the structure as a mass. The nature of the deficiencies on this structure (voids on downstream face and weathering rock within the dam) make a localized failure possible as well. Further investigations into the stability are required to address both of these potential modes of failure. Based on the results of these studies, repairs and required modifications should be made to improve the stability of the dam. d. Seismic Stability This dam is located in Seismic Zone 2. A seismic stability analysis was performed in accordance with Corps of Engineers Guidelines. The seismic analysis was performed for normal conditions with a seismic coefficient of 0.10. The safety factor shown in the table indicates that the dam is marginally stable when subjected to earthquake loading. #### SECTION 7: ASSESSMENT/RECOMMENDATIONS #### 7.1 ASSESSMENT a. Safety The Phase I inspection of the Summit Street Dam revealed several deficiencies which affect the safety of this dam. A large void created by displaced stones was noted near the bottom of the downstream face of the dam. There were smaller voids across the entire downstream face. Leakage both through and beneath the structure was observed in several areas. The inspection also revealed that the spillway capacity is seriously inadequate and outflows from all storms exceeding 23% of the Probable Maximum Flood would overtop the dam. Stability analyses performed for this structure indicate that it would not be capable of withstanding overtopping. Since an overtopping failure would significantly increase the hazard to loss of life, the spillway is adjudged as "seriously inadequate" and the dam is assessed as "unsafe, non-emergency". b. Adequacy of Information The information which was available for the preparation of this report was extremely limited. Analyses performed were based on sketches and on measurements taken at the time of the inspection. c. Need for Additional Investigations Further investigations of the stability problems on this dam are required. These should include investigation of the voids on the downstream face, the leakage through the dam, and the potential problems caused by weatering stones within the dam. Additional detailed hydrologic/hydraulic investigations are also necessary to correct the spillway discharge capacity inadequacy. These studies should consider the site specific characteristics of the watershed, such as additional surcharge storage capacity both within the drainage area and at the dam. These studies should be performed in conjunction with the stability analyses to determine the proper mitigating measures needed in response to the seriously inadequate spillway capacity. d. Urgency The investigations into the stability problems and the hydrologic/hydraulic studies required for this structure should be commenced within 3 months of the date of notification of the owner. Mitigating measures deemed necessary as a result of the investigations and repairs required to correct other deficiencies which exist on this structure should be completed within 18 months. #### 7.2 RECOMMENDED MEASURES - a. After the structural stability analysis has been completed, appropriate remedial work should be undertaken to improve the overall stability of the dam. - b. Repair voids which exist on the downstream face. - c. Control leakage through the strucuture. - d. After completing hydrologic/hydraulic investigations, mitigating measures dealing with the seriously inadequate spillway capacity should be determined. - e. Repair deteriorated concrete on the crest of the dam. - f. Remove brush and vines growing on the dam. - g. Develop an emergency action plan for the notification of downstream residents. APPENDIX A PHOTOGRAPHS Deteriorated Concrete on Spillway Crest; Also Note Highway Bridge Immediately Downstream of Dam. Close-up View of Area of Worst Deterioration on Spillway Crest Right Abutment; Note Folded, Deteriorated Bedrock Spillway and Left Abutment; Note trees Growing Out of Abutment Downstream Face of Dam; Note Brush Growing out of face Close-up View of One of the Small (1 Cu, Ft.) voids Two Large Voids at Downstream Toe on Left End of Structure, Close-up View of Largest Void; Note Leakage Flowing at Bottom Leakage Exiting at Downstream Toe; Water Flowing along Bedrock Foundation; Note Small Voids above Leakage Leakage Exiting at Downstream Toe Stop Log Sluice; Cut in Rock at Right end of Dam Downstream End of Stop Log Sluice # APPENDIX B VISUAL INSPECTION CHECKLIST # VISUAL INSPECTION CHECKLIST ### l) Basic Data | a. | General | |----|---| | | Name of Dam SUMMIT STREET DAM | | | Fed. I.D. # <u>847</u> DEC Dam No. <u>228A-1074</u> | | | River Basin Lower Hubson | | | Location: Town PHILMONT COUNTY COLUMBIA | | | Stream Name AGAWAMUCH CREEK | | | Tributary of CLAVERACK CREEK | | | Latitude (N) 42° 14.8′ Longitude (W) 73° 38.9′ | | | Type of Dam LAID UP STONE & CONCRETE | | | Hazard Category | | | Date(s) of Inspection 10/29/80 | | | Weather Conditions OVERCAST 45° | | | Reservoir Level at Time of Inspection O. 2' Above Top of Stape 05 | | b. | Inspection Personnel R. WARRENDER . W. LYNICH | | | | | c. | Persons Contacted (Including Address & Phone No.) | | | | | | | | | | | | | | d. | History: | | | Date Constructed AROUND 1860 Date(s) Reconstructed | | | | | | Designer | | | Constructed By | | | Owner VILLAGE OF PHILMONT | | -15 | -3 (9 | /80) | | |-----
--------------|-------|---| | | | (1) | Erosion at Contact | | | | (2) | Seepage Along Contact | | | | | | |) | Dra | | System ription of System/\omega_NE | | | | | | | | | | | | | b. | Cond | ition of System | | | c. | Disc | harge from Drainage System | | | | | | |) | <u>Ins</u> | trume | ntation (Momumentation/Surveys, Observation Wells, Weirs, ters, Etc.) | | | | | Nove | | | | | | | | | | | | 5) <u>Re</u> | eservoir | |--------------|---| | a. | Slopes FAIRLY STEEP - NUMEROUS ROCK OUTCROPS | | b. | . Sedimentation EARTH FILL AGRINST UP STREAM FACE TO | | | WITHIN A COUPLE OF FEET OF SPILL WAY CREST | | c. | . Unusual Conditions Which Affect Dam AREA WHERE FLOW WENT INTO | | | VILLAGE DURING HIGH WATER IS NOW BEACH & WATER CAN NO | | 6) <u>Aı</u> | rea Downstream of Dam LONGER EXIT HERE | | | Downstream Hazard (No. of Homes, Highways, etc.) 10-15 Houses | | | AND TRAILERS IN MELLENVILLE | | b. | Seepage, Unusual Growth NONE DOWNSTREAM | | c. | Evidence of Movement Beyond Toe of Dam No - BED ROCK FOUNDATION | | d. | Condition of Downstream Channel BEBROCH - GOES UNDER A | | 7) <u>Sr</u> | pillway(s) (Including Discharge Conveyance Channel) | | | MAIN QUERFLOW SPILLWAY SECTION IN CENTER | | | STOP LOG SLUICE STRUCTURE AT RIGHT END | | a. | General | | | | | | | | | | | h | Condition of Spillway CRACKED CONCRETE ON CREST | | υ. | SOME CONCRETE REMOVAL - ALGNE EACH OF THE JOINTS | | | AT ONE JOINT NEAR MIDDLE BETERIORATED AREA | | | EXTENDS FOR 5' WITH MAX, DEPTH OF REMOVAL OF 6" | | | GRASS & WEEDS GROWING THROUGH CRACKS | | | TOTAL TOTAL TOTAL TOTAL CENTURY | | | | | c. | Condition of Score Spillway Stup Logs 5.7' Down From | |-------|---| | | TOP OF DAM - CONCRETE WALLS ON SPILLWAY CHANNEL | | | APPEARED TO BE IN GOOD CONDITION | | d. | Condition of Discharge Conveyance Channel | | | ROCK CHANNEL - SLATE - TILTED & FOLDED;
SOMEWHAT WEATHERED | | 8) Re | eservoir Drain/Outlet NoNE | | - | Type: Pipe Conduit Other | | | Material: Concrete Metal Other | | | Size: Length | | | Invert Elevations: Entrance Exit | | | Physical Condition (Describe): Unobservable | | | Material: | | | Joints: Alignment | | | Structural Integrity: | | | Hydraulic Capability: | | | Means of Control: Gate Valve Uncontrolled | | | Operation: Operable Other | | | Present Condition (Describe): | | | | VOID | | Concrete Surfaces DETERIORATED & SPALLED CONCRETE | |----|---| | | ON SPILLCREST OTHER CONCRETE OHAY | | | ONE AREA IN CENTER OF SPILLWAY WHERE CONCRETE HAS | | | BEEN REMOVED TO AS MUCH AS 6" & PATCHED WITH ROUGH CONN | | b. | Structural Cracking SOME CRACKING ALONG SPILLCREST | | c. | Movement - Horizontal & Vertical Alignment (Settlement) | | d. | Junctions with Abutments or Embankments TIED TO ROCK-SOME SEEPAGE ALONG INTERFACE | | | | | | | | e. | Drains - Foundation, Joint, Face NonE | | | | | | Drains - Foundation, Joint, Face None Water Passages, Conduits, Sluices CHANNEL AT RIGHT END OF DAM IS OHAY | | | Water Passages, Conduits, Sluices CHANNEL AT RIGHT END | | LAID-UP STONE STRUCTURE- DAM COMPOSED OF | |---| | SMALL FLAT PIECES OF SLATE - SLATE IS | | WEATHERED & BETERIORATING - IN SOME PLACES | | YOU CAN BREAK IT OFF IN YOUR HAND | | | | THERE ARE A NUMBER OF VOIDS ON THE | | DOWNSTREAM FACE - MOST ARE ABOUT I' & SPHERICAL | | THE WORST VOID IS AT BASE OF DAM AT LEFT | | END- IT IS 5' WIDE X 4' DEEP X 3' HIGH | | THERE IS ANOTHER SLIGHTLY SMALLER VOID | | ON LEFT ABUT MENT WALL. ALC VOIDS | | ARE CAUSED BY DISPLACED STONES - STEEL | | LEAKAGE EMERGING AT THE BASE OF A | | NUMBER OF THE VOIDS | | | | | | | | | | | | | • . Burkan was san burkan baran # APPENDIX C HYDROLOGIC/HYDRAULIC ENGINEERING DATA AND COMPUTATIONS 1 # CHECK LIST FOR DAMS HYDROLOGIC AND HYDRAULIC ENGINEERING DATA | | AREA-CAPACITY DATA: | (RELATINE) Elevation (ft.) | Surface Area
(acres) | | rage Capacity
(acre-ft.) | | |----|---|----------------------------|-------------------------|--------------------|-----------------------------|----| | 1) | Top of Dam (LEFT ABUTMENT) | 5. 25 | | | 264 | | | 2) | Design High Water
(Max. Design Pool) | N/A | | | | | | 3) | Auxiliary Spillway
Crest | _N/A | - | | | | | 4) | Pool Level with
Flashboards | _N/A_ | ~ | | | | | 5) | Service Spillway
Crest | 0.0 | 16.5 | · | 178 | | | | DISCHARGES | | | DISCHARGE
(cfs) | <u>.</u> | | | 1) | Average Daily | | | N/A | _ | | | 2) | Spillway @ Maximum High | Water | | 5413 | _ | | | 3) | Spillway @ Design High | Water | | N/A | _ | | | 4) | Spillway @ Auxiliary Sp | illway Crest E | levation | N/A | _ | | | 5) | STOPLOG SLUICE T ALL | stoplogs rea | MOVED | 385 | _(water @ el. o. | 2) | | 6) | Total (of all facilities | es) @ Maximum H | ligh Water | 58∞ | _ | | | 7) | Maximum Known Flood (| 7/5/74) | | ≥ 3670 | _ | | | 8) | At Time of Inspection | | | 1.0 | _ | | 2 | CREST: (LEFT ABUTMENT) | | (RELATINE) ELEVATION: 5.6 | 05 | |-------------------------------|---|-----------------------------|---------------------------------------| | Type: LAID -UP STONE | W EARTH BAC | KFILL | | | Width: 19.5 (+) | Length | n: <u>50['](+)</u> | | | Spillover LAID-UP STONE | W/ CONCRE | TE CAP | | | Location NEARLY ENTIR | E LENGTH OF | DAM | | | SPILLWAY: | | | | | SERVICE | 4 | | 8 | | 0.0 | (RELATIVE) Elevation | N/A | | | (USGS ≈ 495)
OVERFLOW WELR | Туре | , | | | 13′ | Width | | | | Тур | e of Control | Stobrod | SLUICE | | | Incontrolled | | | | | Controlled: | | | | N/A | Туре | STOPLOGS | · | | | boards; gate) | 1/ 27 | /c' | | N/A | Number <u>HT</u> | - 17.2 (FROM 2.7) | 5 ABOVE SPILL CREST | | 1341 | Length <u>2.72</u> | SPAN C | · · · · · · · · · · · · · · · · · · · | | Inve | ert Material | | | | Antic
of ope | ipated Length
erating service | N/A | | | Ch | nute Length | N/A | · | | | etween Spillway (
Dach Channel Invo
(Weir Flow) | | | HYDROMETEROLOGICAL GAGES: | Type : NONE @ | POSSENT | • | SEE | SHTS | 7/ | g 8/ | |-------------------------|--------------|---------------|-------|-------|--------------|------| | | | • | | | • | 1 9/ | | Location: | <u>.</u> | | | | | | | | | | | | | | | Date | | - | | | | | | Max. Reading | - | | | | | | | FLOOD WATER CONTROL SYS | TEM: | | | | | | | Warning System: | NONE | | | | | | | | | | | | | | | Method of Controlle | d Releases (| mechani | sms): | | | | | STOPLOG | SLUICE C | AN FUL | стои | AS RE | 5V. D | RAIN | | | | _ | | | | | | DRAINAGE A | AREA: | 1.16 5 | Q MI | OR | 13545 | ACRES | | |------------|-------------------------------|-------------|---------------|------------------------------|-------------------|-------------|---| | DRAINAGE B | BASIN RUNOFF | CHARACTE | RISTICS: | | | | | | Land (| Jse - Type: | UNDEN | ELOPED : | CROPLAND, C | PEN FIEL | os Pastur | E FORESTS | | | | | • | | | • | | | | F Potential | (existing | or planned | extensive al
e conditions | terations | | | | | N/A | | | | | | | | | | | | | | | | | Potent | _ | | | (natural or | | present or | · future) | | | | | | | | | | | Potent | tial Backwate
including se | | | levels at ma | ximum stor | age capaci | ty | | | NONE A | PARENT | | · | | | | | | | | | | | | | | Dikes | - Floodwalls
Reservoir po | | | rflow) - Lo | w reaches | along the | | | | | | LEFT ABU | TMENT ; IC | <u>000'-1500'</u> | RIGHT OF | RIGHT ABUT. | | (RELATIVE) | Elevation: | +6 | $\frac{1}{1}$ | , | +6'- +7 | AY LEAD . | TO VILLAGE | | Reserv | | -, | | | DI | RECTLY | • - • • • • • • • • • • • • • • • • • • | | | Length @ Max | kimum Poo | ± 4600 | | ± 0. | .87 (Mil | les) | | | Length of Si | horeline | (@ Spillway | Crest) | ± 1. | 75 (Mil | les) | | Ś | | ١M | 'T | |
57: | | D۵ | M | | - | NΥ | | 34 | 47 | | | _ | | SHE | ET N | ¥O. | | - 1 | | | D BY | _ | | DAT | | | | | |----------------|----------|----------|----------|----------|----------------|-----------|-------------|----------------|------------|----------|----------|----------|----------|--------------|----------|----------|------------|----------|----------|------------------|------------|----------|----------|----------|------------|----------|-----|-------------|-----|----------|-----|--------------|--------------| | NEC | T | ER' | | _ | | | | | | | • | | | | | | | | | | | | | | APUT
WC | ED B | Y | | DAI | /1 é |)/E | 31 | _ | | _ | | | | | | | | | _ | _ | L | _ | | _ | _ | | | _ | _ | | | | 4 | _ | L. | | _ | _ | | _ | | | <u> </u> | | Α | GΑ | WA | M | X | K. | | <u>CR</u> | EE | K | | Μ | ΑL | Ŋ. | ڪ | | M: | . ! | | - | | | | | | | | | _ | _ | - | | | ! | | \dashv | | | | _ | | | | _ | ┡ | - | - | | _ | - | F | 1M | <u>س</u> ا | | | _ | | | _ | | | + | _ | - | _ | _ | | | Ļ | | | | 70 | ÇΑ | ĦΛ | рИ | | - | - | DI | 51 | 下)
M | CE | - | ┝ | | ΔT | | | | 70 | FA
FA | - | 귀 | M
HR | | -+ | | | A | <u>_</u> | פוס | ÞŢ. | 1 | | _ | _ | | | | | _ | | - | Н | Δ | (ب | _ | _ | ┝ | | | - | | _ | 7 | | | 4 | | 2) | \dashv | -{ | F | ۲ | _ | (M | ILE | 15 | | | - | | Ρ | ΔΜ | - | ' | _ | - | ├ | - | - | | _ | - | - | | | -1 | | | | - | ٦ | | | \dashv | _ | - | | - | - | _ | t | | | | | _ | | H | - | | | ├ | | | - | \vdash | ┢ | _ | | | | | - | | | ㅓ | | | \dashv | ` | 30 | | | 0. | 4.2 | ł | | - | \vdash | Н | - | | | - | | - | - | 23 | ∞ | | - | ├─ | | ೨೦ | \vdash | | \dashv | - | - | | \dashv | - | | \dashv | ٥ | <u> </u> | 0 | | O. | 43 | K | | | | ER | | _ | | | | \vdash | | - | - | | | | | | - | ╌┤ | - | - | 9 0 | -
 \neg | _ | 25 | -+ | _ | | | - | _ | | + | | -01 | PP. | EK | - | ממ | - | K- | <u>Б</u> У, | - | - | - | - | | - | ┝ | - | | - | - | | | 24 | | 쒸 | ·U | ∞ ⊃ | - | _ | | | | - | _ | ÷ | | | - | | - | - | | | - | - | ١, | 1/ | 50 | - | | 一 | | co | | | _ | _ | | | \dashv | | | | 10 | 95 | | | 3. | 31 | 1 | | | | - | - | - | - | - | | | 尸 | 40 | ∞ | | - | ۳ | 10 | ت | + | + | | | | | - | - | | -# | يع | 23 | بر | | ٠. | <u>or 1.</u> | Ï | | a^ | | ARY | | | 0.0 | A = | (1) | _ | 4 | Ţ | 3 | | - | \vdash | - | | | | ٦, | | 90 | | 궄 | 1 | 08 | \dashv | | | - | | _ | | 1 | | υU | עאע | *** | <u> </u> | 3 | L DE | <u>~⊃</u> | נעון | P | 1 | ī | 2 | - | - | \vdash | - | | | - | σ, | <u>. 11</u> | 70 | | -2 | افد | <u>~</u> 0 | | | ┪ | | | | | i | | | | | | | | | | | _ | /62 | 50 | | | \vdash | (~^ | 41 | | 7 | _ | | | | _ | | | - | 2 | 87 | | , | 4 | <u>~</u> | į. | | | | | | | | | | <u> </u> | | 100 | | | _ | ┢ | - | | | \neg | | | | | 7 | | - | | | | | | 3. | | 1 | | 57 | 0= | AΜ | , | 1121 | CT | _ | 51 | BB | 45 | 11.1 | 2 | _ | | | | | | | ۵ | ر _م ي | 31 | 1 | 7 | ີລ | 86 | | | | | i | | | + | | | | | | 215 | - | | | 177 | | | | | | | | | | 7 | <u> </u> | | | | | | | 1 | | | | | | | ï | | | | | | | | _ | | | | - | 7 | _ | | | | | | | | | | 1 | 7 | | | | | | | | | | Ī | | | | | | | | | | _ | | 63 | 50 | | | | 54 | 60 | | | j | | | | | | i | 2 | S C | <u>/</u> 55 | o. | | 5. | 20 | از | 80 | UN. | DA | ęγ | _ | 50 | ദദ | AS | 12 | 5 | 3 | ಎ | Ę | ١ | | | | | | 3 | 16 | 9١ | | 8 | . გ | C3 | | | | | | | | ! | | | | | | | | | | | | | | T | Ī | i | | | | | | | ! | | | Ĺ | \Box | | | _ | | | | | | | 1 | | | | <u> </u> | | _ | | | _ | <u></u> | L | _ | | | | L. | | | | \dashv | | | | | Ц | | | | | | | | | | 1 | | | _ | | | _ | _ | | | L | L. | L | <u> </u> | | | L | | | | _ | | | | | _ | | | _ | | | | | | _ | | | | _ | | _ | _ | _ | _ | L. | <u></u> | L | _ | <u> </u> | _ | _ | L | _ | | | ᆚ | | | | | _ | | | | | | | | | | + | | <u>_</u> | <u> </u> | _ | <u> </u> | _ | _ | <u> </u> | <u> </u> | _ | _ | _ | <u> </u> | _ | <u> </u> | <u> </u> | <u> </u> | | | _ | | | | | _ | | | | _ | | | | | | + | | <u> </u> | _ | _ | | _ | <u> </u> | <u> </u> | L | _ | _ | L | _ | _ | <u> </u> | <u> </u> | <u> </u> | _ | | _ | | | | | | | | _ | _ | | | | | | 1 | | | - | L | | _ | | - | <u> </u> | _ | L | _ | - | | <u> </u> | <u> </u> | <u> </u> | | - | | | | | \sqcup | 4 | Ь., | | | | _ | Ц. | | | | 1 | | | - | _ | _ | _ | | - | | <u> </u> | | - | _ | | - | - | _ | <u> </u> | | 4 | { | | \vdash | \dashv | 4 | _ | \vdash | | | | | | | | į | | | - | _ | <u> </u> | | _ | - | _ | - | | | - | - | - | <u> </u> | <u> </u> | \vdash | \vdash | \dashv | | | | | | | \vdash | \dashv | - | | | | - | | : | | | - | _ | _ | - | <u> </u> | - | | \vdash | - | - | | _ | _ | - | <u> </u> | | | \dashv | | | | - | \dashv | _ | \vdash | -+ | _ | _ | _ | | | _ | + | | _ | _ | - | - | | - | | - | - | \vdash | - | | | | ├- | - | - | \dashv | \dashv | | | | \vdash | \dashv | \vdash | \vdash | + | | | | | | | ŧ | | - | <u> </u> | - | - | | - | _ | - | - | \vdash | - | ├- | | - | - | - | - | \vdash | ᅱ | | | | - | \dashv | | \vdash | + | | | - | - | | | t | | - | - | - | - | ├ | - | - | <u> </u> | - | - | +- | | - | - | - | - | _ | \vdash | - | | | - | \vdash | | - | \vdash | + | - | _ | | | | _ | + | | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | | | ᅱ | - | | \vdash | \vdash | \dashv | \vdash | \vdash | + | | | - | | _ | - | + | | - | - | - | | - | - | - | - | - | - | \vdash | | | - | - | - | - | | \dashv | - | _ | \vdash | \vdash | \dashv | H | Н | \dashv | | | - | | | | Ŧ | | | - | - | | - | - | | } | - | - | - | - | <u> </u> | | - | - | | | \dashv | | | \vdash | | ᅱ | - | \vdash | \dashv | _ | _ | | | _ | _ | t | | - | - | - | - | - | - | - | - | - | - | - | | | - | | - | | \vdash | \dashv | | | | | \dashv | | \vdash | -+ | | \vdash | H | | | _ | t | | ľ | • | | ſ | ſ | ı | t | i | | <u> </u> | <u> </u> | ٠ | | | L | ш. | | \sqcup | | | | | | _ | | ╙ | | _ | | | | | | 1 | | - | | | | Г | | | ļ | | Γ | | | | ļ | l | | | | ı | 1 | | | i | ı | | | 1 | | . ! | | Ì | | | 1 | MM ---25 17:11:11: ... 200 at ,002 :: FROM 900 o 0.00682 13700 000 -847 STREAM WIDTH PANCES SUMMIT u ...a STREAM WIDTH S 2 ų Q REACH S MAIN 200 M 69 **€ 4** E CRE g 3+30 2 ų <u>`</u> ō ັນ UD! WAMUCK 3 (RESERVOIR) 414 AGA LCWCRERK MIDCREE == SECTIONS ----:::: 0+70 TYPI 1: -:::: ----.::1:: : : ---1: : ::! 1::::: : KE ZOX 20 TO THE INCH 46 1240 | JOB | | A P.A | . — | ے۔ | _ | DA | | | | | | | | | | | | | | SHE | ET I | vo. | | | CHE | CKE | DΒ | Y | | DA: | TE | | | | |---------------------------|----------------|----------|----------|--|----------|----------|--|----------|----------|------------|----------|----|--------------|----|-----------|----------|----------|----------|----|----------|-------------|--|------|------------|-----------------|------------|-----|----------|--|--|--------------|----------|-----------------|----------| | SUB | JEC | Т | | | | | | | ŢĒŔ | ·· | | | | | | | | | | | 7 | | | - | | APU
WC | TED | ВҮ | . — | DA | | /31 | | _ | | | 204 | i jei | (3) | HE | Ĺ | 1/2 | KA. | | = | | <u> </u> | | _ | | Г | i - | i | ļ | | | | | | | - | <i>D</i> C | _ | | | | 113 | / 31
 | | _ | | | DR | A1 | NΑ | SE | A | RE | A | - | FR | M | 7 | .5 | М | N. | υ | SG | 5 | Q | UA | ۵ | 5 | HE | ΕT | 5 : | | | | | | | | | | | | \Box | \Box | | | | | | L | | | | | 1" | = | ေ | ೦೦ | ′ | Ŀ | | | | | | l 'I | | | | | | | - 0 | | | | | | \dashv | | | HE | | _ | <u> </u> | _ | - | | <u> </u> | | _ | ρ | LA | עומ | ME. | TEK | | | | | 1.0 | - | | 2 | - | 91. | 35 | 17 4 | | | | - | | | $\overset{\downarrow}{-}$ | | Ŋ | Α,Μ | E_ | ┝ | - | SU | ee | AS | 17 | | _ | - | AR | EΑ | - | 5 | 21 | ٧. | _ | _ | - | AC | 6E6 | - | | | _ | - | 50 | . м | ١. | ! | | | \dashv | \dashv | | AVE | 0.00 | | | - | 4 | | ├- | _ | - | | - | ١٥ | . 3 | a | _ | - | \vdash | | - | | | \vdash | | _ | - | - | - | | _ | | | | - | \dashv | | AVE | KAL. | | | | ~ | | ┢ | \vdash | | _ | | 113 | 2 | 0 | - | _ | \vdash | | - | | | | _ | | \vdash | _ | | \vdash | | | | | \dashv | 7 | ST | OΤ | TV | 11_1 | _ | | 4 | | ┢ | | | | | 1 | . 3 | 0 | | | | | | | | | | | | | | | | | _ | | \Box | _ | | \Box | | СH | ΑŢ | ΗА | M | | | 4 | | | | | | | ခ | .6 | 6 | | | | | | | | | | | | | _ | | | | | | _ | 4 | | | _ | L | <u> </u> | <u> </u> | <u> </u> | _ | <u> </u> | _ | | ļ | | <u> </u> | <u> </u> | <u> </u> | | | | | _ | | | | | _ | _ | _ | _ | | | | | | \dashv | - | HI. | LL | | | | | | | | | | | | | | | | - | | | _ | | _ | | | _ | \vdash | | | | | | | | \dashv | \dashv | _ | - | - | \vdash | - | - | - | _ | ├─ | | | | - | 36 | ٤ | 7 | - | = | F | → | <u> </u> | 33 | 1ع) | .3 | | _ | - | - | = | ه. | ۵_ | - | | | _ | | | LL | - | - | - | - | 3 | \vdash | - | - | _ | | - | 7.4 | . 8 | 1. | <u> </u> | _ | \vdash | _ | | | | | | - | - | ┢ | \vdash | _ | | \vdash | | | 寸 | 1 | H | | עב | A. | | \vdash | 13 | | ┢╴ | | | | | <u>∞4</u> | 20 | σ | | | - | | _ | | | | | _ | _ | | - | | | | _ | | \Box | | CH | ΑT | HA | M | | | 3 | | 1 | | | | | 16 | . 1 | 7 | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | l | .0 | | | _ | | _> | | 37 | 67 | 9 | | | _ | → | 5 | .8 | 9 | | | | \dashv | _ | | | | L | _ | _ | | | | | | | | | | L | | | | | | | | | | | | _ | L | | | | | | _ | _ | HT | LL | 50 | ΔL | E. | _ | a | | _ | | | ļ | | 0 | ٥۔ | 3 | _ | | | | | | | _ | | | <u> </u> | | _ | | | | | | \dashv | | | | - | <u> </u> | _ | - | - | ļ | _ | | | <u> </u> | | _ | <u> </u> | _ | | | | | _ | | | | | | | | - | | | | | | \dashv | - | Сн | ΔΞ | HA | M | - | - | ခ | - | - | _ | | | - | 41 | _ | _ | | | H | | - | 20 | | | | | | - | - | | | - | | | + | - | _ | | | - | \vdash | - | - | \vdash | <u> </u> | | | _ | | 42 | .0 | 0_ | - | = | H | > | | 38 | 5∕₀ | -4 | | - | = | 7 | 9 | .0 | <u>a</u> | | | | \dashv | i | Си | TA | шА | м | | | 1 | П | | _ | | | | 27 | . 8 | C | | | | > | | วร | รถ | a | | | _ | , | 2 | و. | 9 | | | | 1 | - | <u> </u> | | 10.2 | | | | | | | | | | | - | | <u> </u> | | | | | | - | - | | - | | | Ť | = | | | | 1 | | | | | | | | | | | = | | | | - | | | | | | | | | | I | 20 | ΑL | L | | | | | 47 | .5 | ٥ | | _= | | → | 1 | 35 | 44 | .5 | | | _ | > | ग | | 6 | | | | _ | | | | _ | \vdash | <u> </u> | <u> </u> | <u> </u> | | \vdash | <u> </u> | | _ | | <u> </u> | | _ | | | Щ | Щ | | | | Щ | | | <u> </u> | _ | _ | | | \sqcup | | | $\overrightarrow{+}$ | _ | _ | _ | <u></u> | | - | ļ | - | | _ | | EV | | _ | <u> </u> | | | | | \vdash | | | | _ | H | | _ | <u> </u> | _ | _ | | _ | - | _ | | | | | RY | | | | UR | FΑ | CE | <u>l</u> @ | 4 | 95 | | - | <u> </u> | - | - | - | | \vdash | | - | | | \vdash | | | <u> </u> | - | - | _ | | $\vdash \vdash$ | _ | | \dashv | | _ ا | ΑV | - | r\C. | K | - | \vdash | - | - | H | - | - | | <u>ان</u> | - 1 | ٥ | | _= | Ħ | → | | Н | 10 | .5 | | - | - | - | _ | _ | - | | | | \dashv | — | | _ | - | \vdash | | | | | \vdash | | | | | | - | | | | \vdash | | | | | |
| - | - | | | _ | - | | _ | | 寸 | 1 | П | | | | | | | | | _ | | \Box | $ \prod $ | | | | | | | | _ | | | | | | | | _ | | | | | | | | | | | | <u> </u> | | L | | | | | | _ | _ | | <u>L</u> | | <u> </u> | _ | _ | - | _ | L | _ | | _ | _ | <u> </u> | _ | | | | | | | | | Щ | | | _ | _ | | | | - | _ | | \rightarrow | - | | _ | - | - | _ | - | <u> </u> | _ | ├ | \vdash | _ | _ | | - | | <u> </u> | | | | | | | | $\vdash \vdash$ | | - | - | - | \vdash | - | | | _ | | - | \dashv | | - | - | - | - | - | - | H | \vdash | \vdash | | - | - | | | | _ | | | | | | | $\vdash \dashv$ | _ | | | \vdash | | | | \vdash | _ | | \dashv | | | | - | - | \vdash | - | - | \vdash | ├─ | H | | - | - | \vdash | _ | | | | H | | - | | \dashv | \vdash | - | | - | | ╁ | | _ | $\vdash \vdash$ | \dashv | | \dashv | | _ | - | | \vdash | - | | - | - | - | | | | | \vdash | - | | | - | H | | | | | H | | - | - | | | Η- | | - | 7 | | \dashv | | _ | _ | | | \vdash | _ | | | Т | | | Т | | Г | | | | _ | П | | | | | | | | \vdash | | | <u> </u> | | | - | | JOB
SUMMIT | ST. DAM | SHEET NO. CHECKED BY | DATE | |---|---|---|---| | SUBJECT | | COMPUTED BY | DATE /Q | | WATERSH | ED PARAMETERS | WCL | 1/13/81 | | | ┇┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋ | | | | ┠┼┼┼┼ | ▋ ▍ ╏╏╏ | SURBASIN | | | SNYDER | UNIT HYDROGRAPH: 4 | 3 2 | | | ┡┼┼┼┼┼ | CORPS OF ENGINEERS | ╂┼┼┼┼╂┼┼┼ | | | REF. | LOWER HUDSON RIVER BASIN | ╂┼┼┼┼ ╂┼┼┼┼ | - - - - | | ┠╼╁╼┾╾┼┼ | HYDROLOGIC FLOOD ROUTING | ┫┋┋ | -1 | | 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + | Made L | ╂┼┼┼┼╂┼┼┼ | | | ┦╾╁╌╂╾┼╌ | (50BARE A#10) C. 3.3 | 2.3 2.3 | 2.3 | | ┠┈┼┈╎┈ | C, 2.3 | | -+-+-+- | | | (HES): L 28900' | 29 300' 27 650' | 24300 | | LAG TIME | | 5.549 5.237 | 4.697 | | }- | (L × L 2) (MILES) 5.473 | 5.549 5.93/ | 4-1071 | | t _p = C _t | | 13,700' 14,700' | 13450 | | ┠╾┼╌┼╌┼╌ | - | | 2.547 | | ┣┼┼┼╌ | (MILES) 1.865 | 2.595 2.784 | 0.1241 | | ┣ ╾ ┠┈┼ ┼╌ | (HR5) to 4.60 | 5.12 5.14 | 4.84 | | | (HKB) Cp 4-60 | 1 3.79 | | | ┠╼╄╼┼╌┼╌ | | ▐╸┼┈┼┈┧┈┨┈╎┈╏┈╏ | | | UNIT RAI | INFALL DURATION (HES): | ╂┼╁┼┼╂╂┼┼┼ | - | | | | 0.93 0.93 | 0.88 | | ty = ty | P/ (HRS) tr 0.84 | 0.93 0.93 | 1 9 9 | | ┡┼┼┼ | ▗▊ ▃▐ ▗ ▃┡▃┡▃┞┈┫▃ ╽ ╌┞═┞═╄┈╂╾┞╶┿╍┼═┼ | 10 110 | 1.0 | | ┡┼┼┼ | USE + tR 1.0 | 1.0 | | | ┣┿┿┾ | ╏╸ ╏╸╏╸╏╸╏╸╏╸╏╸╏╸╏╸╏╸╏╸╏╸ | ╂╌╀╌┼╌╂╌╂╌╂╌┼╌╂╌┼ | | | ┡┼┵┼╌ | ┩┩┩╘ ╇ | | - | | ADJUSTED | D LAG TIME (HRS): | | | | ┡┼┼┼┼ | | 5.14 5.16 | 4.87 | | TP = C | p + 0.35(tg - tr) TP 4.66 | 5.14 5.10 | | | ┡┼┼┼╌ | (445) | ·┠╌┩┈╏╸╋┈╏╸╋ ╌╅ | AL IERS | | | ┇╏┋┋ | ·┠·┼·┤·┼·┨·┼·┤ ╌┼ | - | | ++++ | ╀┼┼┼┼┼┼┼┼┼┼┼ | · ╂╾┼╌┼╌┼╌╂╼┼┈┼ | | | ┠┼┼┼┼ | ╂┼┼┼┼┼┼┼┼╂┼┼┼ | ┫ | PARA | | I -+-+-+-+ | ╂┼┼┼┼╂┼┼┼┼╂┼┼┼┼ | | | | | | ╂╌┼╌┼╌╂╶┼╌┼╌┤ | SNYGE | | PEAKING | CDEFFICIENT: | ╂┼┼┼┼╂┼┼┼ | | | } | ┪┧┧┧╞ ╏┽┼┼╂┼┼┼ | ▐ ╌┼╌┼╌╂┈╂┈┼╌┼╌┼ | | | REF | - SAME AS ABOVE | ╼╂╌┼╌┼╌╂╌┼╌┼╌┼ | | | I | ┨┋┩┋ ┼┼┼┼ | | -+ | | 640 | CA = 359 CP 0.56 | 0.56 0.56 | C.5% | | 1-1-1- | ╏┝┋ ╁┼╂┼┼┼┼┼┼┼┼┼ | ╂╼┼╌┼╌╂╌┼╌┼╌┼ | | | | ╽╎╏╏╏ | ╂┼┼┼┼╂┼┼┼ | | | | ╀┼┼┼┼╂┼┼┼┼┼┼┼┼ | ┫ ╾╇╼┿═╅ ╒ ┪ | | | | ╏┊╏┋┋ | ╉╁┼┼┼╂┼┼┼ | | | | ┨╎┧╎┥╏╏╅┥┼╄┾┼┼ ┼ | ╅┾┼┼┼┼ | | | | | | | | JEC | | ηŢ | | | T. | | VA | M | | | | | | | | | | | <u> </u> | 4/ | | | | COL | MPU | TEO | RY | | DAT | CF. | | | | }
; | |-----|----|----------|--|--------------|----------|--|---------------|---------------|-------------------------|------------------|--|-----------------|----------------|--------------|--|--|--|--|--|-------------|--------------|-------------|--|---------------|--|----------|----|---|---------------|-------------------|----------|--------------|--|--------| | | | RS | HE | D | (| AR | AM | ET | ck? | | | , , | | , | | | , | _ | | | | , | | 0 | | 21_ | | | | /13 | ,/8 | 31 | | , | | _ | | | _ | <u> </u> | _ | _ | _ | _ | ļ | | ļ., | \vdash | | | <u> </u> | - | | _ | _ | | _ | _ | _ | - | _ | _ | | | | \vdash | | | | 1 | | ₹E | Ę. | = | | AM | T | | 5_ | | 缸 | | /- | : | | - | | - - | | | ├- | - | _ | 50 | 88 | AΞ | 11/ | | | - | | - | | | \vdash | l | | - | | - | | oω | 7 | 1 | | • | | | ME | R | | - | ' | 4 | - | - | - | - | 3 | - | - | ├ | - | 9 | | _ | - | ┝╌┥ | 1 | - | | | | -+ | _ | - | - | ┝ | <u> </u> | AS | M | 5 | ħλ | PY | | ├─┤ | | | | ├ | - | - | - | | - | - | - | ├ | - | - | - | | | \vdash | | \vdash | H | ĺ | | - | _ | | _ | - | _ | | _ | - | - | \leftarrow | _ | \vdash | | - | | <u> </u> | - | | - | _ | - | _ | - | ├ | - | _ | _ | | \vdash | | _ | | \vdash | l | | ZR. | Αŋ | A | GE | ┞┻ | RE | Α. | (2 | Q | M | ۱ | | БНП | 3 | r — | 5 | . 2 | 6 | \vdash | - | -5 | .8 | 9_ | - | ┝ | -6 | ۰.0 | ۳. | _ | | ے. | ع | 9 | \vdash | ĺ | | + | _ | - | - | ┝ | - | - | - | - | | \vdash | | \vdash | | - | | ├ | | | | - | - | - | - | ┝ | - | - | - | _ | - | \vdash | _ | | | | | | | _ | | - | | - | - | | _ | H | _ | fs | | _ | - | 5 | - | - | - | | _ | | - | ┝ | - | 6 | | | | | 4 | | | ŀ | | X | 58 | - | F | Q. | <u> </u> | @ | - | CE | (D) | 1 | عام | #5 | / S | 9 | H | 13 | - | \vdash | | - | 6 | - | | ┢╌ | - | (0 | - | | | | ٦. | | | İ | | 4 | - | - | 20 | cs | - | - | | - | | | | | | - | | 15 | | | - | <u> </u> | 18 | | _ | ┢ | - | 18 | | | | | 12 | H | | | | 7 | | | YK | 13 | N | - | | - | | H | | H | | | | | | \vdash | <u> </u> | - | 10 | - | | - | _ | 10 | | | | 7 | بحود | | | İ | | + | | | - | 上 | > | = | 7 | X | RA | SE | E1 | 011 | | <u> </u> | | _ | | | | _ | i
1 | - | | <u> </u> | _ | | | _ | | 1 | \neg | | H | İ | | 7 | _ | | | | | | _ | <u> </u> | - | 2 | _ | RT | | Q | | 3 | | | | | 3 | | | 1 | | 3 | | - | | | 3 | | | Ì | | 7 | | | _ | | | 1 | | | | П | | -4 | •• | - | | | | | | | | | | Г | | | | | | | - | | П | | | 2 | 4 | ES | 15 | 01 | | IN. | 1F | 11 | TR | | 10 | <i>u</i> | : | | <u>├</u> | | | | _ | | | | | | | | | | | | _ | | | İ | | | | | 1 | | | | - | | 1111 | | | 1 | į | | | RE | E. | _ | ء | AM | E | ΑS | 5 | нт | 3 | 1 | | | | | | | ומו | 714 | l_ | = | ١ | ٥٠ | IN | | | | | | | | | | | | | | | | L | bω | FR | Н | פט | 50 | 7 | RI | ٧Ę | R | | | | C | ON | 1 | i | | | | | IN | /н | | | | | | | | | | | | | | | | В | AS | IN | 5 | _E | ρŲ | Ì | _ | | | | | | | | | | | _ | | L | L | | | | | | | | | L | | _ | | | _ | | | _ | | _ | | | _ | | | | | | Ш | İ | | _ | | _ | L | L. | _ | | L | | _ | | _ | Ш | | L | _ | | | | _ | | | | | L. | _ | | _ | | | \sqcup | | . ! | | | | | | | _ | L | | _ | | | L | | _ | | | L | | <u> </u> | | | L | | | <u> </u> | <u> </u> | <u> </u> | _ | ļ | _ | _ | | \longrightarrow | | | | 1 | | A | и | FA | L | ٠ | - | PM | ٩_ | | <u> </u> | | _ | \sqcup | | _ | _ | | | <u> </u> | _ | _ | ļ | | <u> </u> | - | <u> </u> | <u> </u> | _ | | \vdash | \vdash | | | \Box | | | | | _ | | L | <u> </u> | - | <u> </u> | - | <u> </u> | <u> </u> | | \perp | | <u> </u> | <u> </u> | ļ | <u> </u> | <u> </u> | _ | | - | | | - | - | - | | | | \dashv | | | \vdash | | | _ | RE | F - | - | HV | R | #3 | 3 | - | | _ | <u> </u> | | لـــا | <u> </u> | ├ - | ├— | | | ├- | | | _ | <u> </u> | | - | | _ | | | \vdash | | <u> </u> | \vdash | İ | | 4 | | _ | _ | - | - | - | <u> </u> | - | - | | | | ļ | ,,- | - | | - | - | - | - | 7 | <u> </u> | H | - | - | - | - | | \vdash | -+ | | | \vdash | | | - | | 20 | NE | 1 | - | IN | DE | X_ | ٢ | MP | | = | ಎ೦ | | ├- | ि | 00 | ج | Q / | 11 | 3 | 4. | R) | | - | | _ | | \vdash | - ' | | - | | | | - | | - | - | - | | ├- | - | - | - | ļ | - | ┟╌┤ | | - | - | - | - | <u> </u> | ١., | | | | - | - | _ | - | _ | | | ┌┼ | | | \vdash | | | - | | 07 | 1 | • | | , | | | ATERSHED DURATION (HRS) | | | | | | | | | | | - | - | 6 | | | 2 | - | 24 | | -4 | 8 | \vdash | İ | | | | -+ | | _ | A | Β'n | 5 | ME | NŢ | F | OR. | 1 | ME | 7 | _QA | ┝ | - | 91 | - | <u> </u> | - | | | = | - | | _ | <u> </u> | 15 | - | 2 | - | | 4 | -1 | | | | | - | - | - | - | - | - | - | - | | | | _ |
- | | 70 | 0 | E | IIN | DEX | | - | - | 10 | <u>. </u> | | 15 | | 25 | $\vdash \vdash$ | يا. | 14 | - | Ì | | + | - | | - | - | - | - | - | - | - | - | - | \vdash | | <u> </u> | _ | | - | | \vdash | | _ | - | - | \vdash | - | | - | | | \dashv | | \vdash | \vdash | | | + | | | - | - | - | _ | - | - | - | | | $\vdash \vdash$ | | \vdash | H | - | - | | | - | | - | - | \vdash | - | - | - | | | \vdash | | \vdash | ┤┤ | | | + | | \vdash | | | - | | \vdash | _ | | | | \vdash | | | | _ | \vdash | _ | | | - | - | - | \vdash | - | _ | - | _ | | _ | | | \square | | | + | | - | - | - | - | | - | | - | | | \vdash | \vdash | | | | | $\lceil - \rceil$ | | | | | | \vdash | | | | | | $\neg \uparrow$ | | | ; | l | | + | | | | | | | _ | _ | 1 | М | | М | | <u> </u> | | \vdash | П | | \vdash | _ | | | - | <u> </u> | _ | | | _ | | $\overline{}$ | _ | - | \Box | | | 7 | | | \vdash | Γ | | | | | | | | \sqcap | П | | | | | | Г | | i | | | \Box | Γ | | | | | \Box | | | | | | 1 | | _ | | Г | 1 | | | | | \Box | | П | | Γ | | | | | | | | | j | | | | | _ | | | | 1 | | Ì | | -+ | | _ | | 1 | 1 | 1 | $\overline{}$ | _ | _ | _ | | $\overline{}$ | | Γ_ | | \Box | | $\overline{}$ | Г | | | _ | | _ | | | | | | | | | \Box | Ì | | 5 | <u>س</u> | MI | T | _ < | <u> ۲</u> | | DA | Μ | | | | | _ | | _ | | | | | EET
5/ | NO. | | | (| | D 8 | | | DA | | | | | 1 | |---------|---------------------------------------|--|------------------|--|---|---------------|--|--------------|---------------|--|--|--|--------------|----------|--|--------------|----------|--|----------|-----------|--------------|----------|--------------|--|--|-------------|----------|----------|--|---------------|----------|--------------|----------|-----| | JJEC | T: | | E - STORAGE DATA | | | | | | | | | | | | | | | | | | | ВУ | | DA | | | | | 1 | | | | | | | S | TAC | ŚΕ | . – | - STORAGE DATA | | | | | | | | | | | | | | | | | ω | L | | | ۱ ا | /13 | 3/: | 31 | | i | | | | | | | | T . | | | | | | | | | | | | | | | | | Г | | | | | | | | | | 1 | | | | | | | | _ | | \dagger | \vdash | - | _ | | | T | \vdash | | _ | <u> </u> | \vdash | \vdash | \vdash | t^{-} | | \vdash | \vdash | \vdash | 一 | ├─ | | | | _ | _ | ┢ | | - | - | - | f | | - | - | ├ | ╁. | \vdash | , | - | ├ | - | ╀╌ | ┼ | ├ | - | - | ├ | ├ | ├- | - | - | ├─ | | - | - | - | ├- | ├- | - | - | - | ┝ | <u> </u> | ├ | ├- | | 1 | | RE | F: | ┞ | ₩ | 27 | // 3 | 9 | LE | 17 | R: | <u> </u> | <u> </u> | <u> </u> | <u> </u> | L | ├_ | <u> </u> | ـــ | - | L- | <u> </u> | <u> </u> | <u> </u> | | ! | ┞- | <u> </u> | ! | | <u> </u> | | Ļ | Ļ. | | 1 | | | L_ | | Ľ | L | <u>_</u> | | _ | | 上 | | L | _ | <u></u> | | | | L | 上 | L | _ | L | L | _ | _ | <u> </u> | <u> </u> | | | L | | | | | } | | | | | ST | OR | AG | F | V | OL | UM | E | = | 52 | × | l۱٥ | 6 | AL | 5 | _ | - | ١, | 78 | A | k - | FT | | | (0 | 5 | PIL | LC | RE | 5τ | | ں [| | | | | | | | | _ | | | | | | | | | | | | | | | | | М | | | - | | | | ٧. | | | ľ | | | - | ├ | + | | | | ╁ | - | - | | ├─ | - | | ├─ | | - | ┼─ | - | - | ┢ | ╀ | - | | ╁─ | ├─ | ├ | | - | ┝ | _ | - | | ŕ | 1 | | - | - | - | ┼ | - | - | } | ├ | ├ | | ├ | | | ┝ | ├- | | - | - | | - | - | ├- | | | | ├ | | ├ | - | | ├- | | - | | ļ | | ŖΈ | E: | _ | SH | 口 | 2/ | L. | <u> </u> | L | 5 | UR | EA | CE | LA | RE | A | 0 | v | 2 | 5 | E | EV | 4 | 95 | 三 | | 6. | 5 | AC | RE | 5 | L | | | l | | | , | İ | 1 | ľ | / | | l | 1 | | ł | ľ | | } | l | ł | - | } | ∤ ` | | | | } | } | | | l | | | | | | | | ļ | | | | | | | | <u>Γ</u> | T | | | 1 | RES | | | Г | | | | | | | | -) | 1 | | | _ | | | Г | | | | | ĺ | | - | _ | | - | ╁╌ | - | - | ├─ | - | ├- | _ | _ | _ | - | ┝╌ | - | | - | - | ⊢ | | | | - | - | - | - | - | _ | - | <u> </u> | - | ├ | | | | | EL | ΕV | 4_ | ├- | | H | | - | ├ | AF | EΑ | <u> </u> | <u> </u> | | A | 01 | - | | <u> </u> | V | OL | - | | _ | | | | <u> </u> | <u> </u> | - | <u> </u> | <u> </u> | - | ł | | | | | 1 | L | | _ | L | _ | L | L | <u>_</u> | | 乚 | L | | L | | | | _ | L | L | | | L | <u> </u> | <u> </u> | | L., | L | | _ | | j | | _ } | 49 | 5 | | }. | _ | <u> </u> | ļ |] | | Illa | .5 | | | | | | | | | 1 | 78 | | | | | 1 | | | | _ | | | | l | | | | 1 | | | | | | | | | | | | | | | | | | _ | | | _ | | | <u> </u> | | | ı | | | | | | | \neg | - | - | 5.25 | | | | | | | | | | | | | | - | - | | | - | - | | | | | - | H | | | | | | | | | - | | 5.25 86 | | | | | | | | | | | | | | | - | <u> </u> | | - | | | <u> </u> | | | <u> </u> | Ш | l | | | | | | | | | | 5-35 860 | | | | | | | | | | | | | | <u> </u> | | | | | | | | <u> </u> | | | l | | | | | | | | ı | 5 0 | 0. | 2. 25 16.5 264 | | | | | | | | | | | | | | | | | - | | | | | | } | | | l | | | | | | | | | | | | | | | | Г | <u> </u> | | | 7 | | | | | | _ | _ | | | | | Ι_ | | | | | | | | | İ | | | | | - | - | - | <u> </u> | | - | | | - | - | - | \vdash | - | ┝ | | | | - | - | - | - | | - | | | | ┝ | | - | - | | ĺ | | | | - | ├ | <u> </u> | | <u> </u> | <u> </u> | - | - | | <u> </u> | _ | _ | L | <u> </u> | _ | | <u>} </u> | L. | <u> </u> | <u> </u> | _ | ! | | _ | _ | _ | | L., | <u> </u> | Ļ., | | _ | ı | | | | | L | <u></u> | | | | L | | _ | | | | <u> </u> | | | | | | | | _ | | | | | | | | | | | | | | | | | | Į – | | | | |] | | | | | | | | | | | | | |] | | - | | | | | | | | | l | | | | | | | | | | | T | _ | _ | | | \vdash | | | | | _ | | | | _ | 1 | | | _ | | | $\overline{}$ | - | | | 1 | | | | | ╁╌ | ┢ | | - | - | - | ┢ | - | ┝╌ | - | - | ⊢ | _ | - | - | - | <u> </u> | ļ | | - | - | \vdash | | - | - | _ | <u> </u> | <u> </u> | - | <u> </u> | | | | | | - | ↓_ | ┞- | L., | | | <u> </u> | <u> </u> | _ | | <u>_</u> | _ | <u> </u> | _ | | | | L_ | _ | _ | | | | | <u> </u> | | | <u> </u> | _ | | <u> </u> | | | | | | | L | L | | | | | L | | | | | <u> </u> | ĺ | | . [| | İ | | | | | ľ | | 1 | [] | | | | | | | | | | | | | | | | _ | | | 7 | ĺ | | - | _ | | - | \vdash | - | - | | | ├─ | - | - | _ | - | ┝ | - | - | | | | | - | | - | \vdash | - | - | | | | | _ | - | \vdash | l | | | | | — | <u> </u> | Ь, | <u> </u> | | | ├ ─' | <u> </u> | - | | | L | - | | | | | | <u> </u> | | | | ļ | - | | | | | | | | l | | ! | | | | L_ | | | <u></u> | | | L. | | | | _ | | | | | | | | | | | | Ĺ | | | L | | | | | l | | Ì | | | | | | | | | | | | | | | | ļ | | | | | | | | | | | | | | | | | | ĺ | | | | | | Г | | $\overline{}$ | | _ | Г | | | | | | | _ | | _ | | | | | | | | | | | | \Box | | - | \Box | İ | | | - | - | | | | - | - | | \vdash | - | - | - | | ⊢ | | - | - | - | - | - | | | | - | - | - | | | - | | - | _ | \dashv | l | | | | - | ├- | - | \vdash | <u> </u> | <u> </u> | | | ├ | | <u> </u> | <u> </u> | L | <u> </u> | - | - | <u> </u> | | | <u> </u> | \vdash | - | L | | | | | _ _ | لـــــ | | | Щ | l | | | | | _ | | | L. | L | | | <u></u> | | | | L. | <u></u> | | | | | | | | | | | | لـــا | | | | | | | i | | I |] | | | | | - | l | | | | ╎┊╸╏╸┩╶╏╶╏╶╏╶╏╸╏ | _ | _ | \vdash | ĺ | | | | | | | | | | | | ╃┼╂╂╫╫ | | | | | | | | | | | | | H | \vdash | - | | | | - | | | | \dashv | i | | | | | | | | | | | _ | · ▎ ┤┼ | | | | | | | | | | | | <u></u> | | | <u> </u> | <u> </u> | | | Щ | | | | | ł | | | | | | | | | | 51 | OFLOG DISCHARGES: ALL STOPLOGS REMOVE | | | | | | | | | | | | VΕ | 0 | | | | | | | | | | | l | | | | | | | | | | | st
í | | | } . | ا | | , | | | [] | |] | | | | | | | | | | | PIL | | وي | ES | + | | | | | | | \Box | l | | i | \overline{a} | Q = CLH ⁷ | | | | | | | | | | | | | | | - | | 1 | | _ | | | | _ | | l | | | | | | | | | | 4 | | | | | | | | | | | | | | | - | - | | - | | | | | | | { | | | | | | | | | | - | | | | | | | | | | | | | | | | | L | L., | _ | | \neg | | | | | | ļ |] | | | | | | | | | | | | | | | 1 | | H = 14.45 | -+ | | i.s | | | | | | | | | | | | | | - | _ | | - | \neg | | - | | | \dashv | ! | | | | | | | | | | - 1 | | <u> </u> | | ٠. | | _ | , | - | $\overline{}$ | 1.5 | | _ | \vdash | - | _ | | - | \dashv | | | | \vdash | \dashv | \vdash | | | | | \vdash | | | | | | | | _ ' | | | | | | | | | | | 7! | 0-1 | - 1 | | | | ۵ | - | (2 | (ع). | (2 | .1) | | 4 | 5) | | ا ا | _2 | 85 | 7 | £s | <u> </u> | | | | | | | _ | | | _ | | | | | | | | | | JOE | SU | Mr |
11 T | • | <u>-</u> | | DA | M | | | | | | | | | | | | SHE | ET 1 | NO. | | | СНЕ | |
| | | DA. | ΓĒ | | | | |----------|----------|--------------|----------|----------|--|------------|----------|-----------|--------------|-----------------|-----------|--------------|-----------|----|---------------|----------|----------|----------|--------------|------------|--|------------|--|--|--|--------------|--------------|--|--------------|-----------------|----------|----------|----------|----------| | SUE | NEC | T | | | | | | | | ES | ` | | | _ | | | | | | | / | | _ | | cor | WC. | | ВУ | | DA ³ | | 4/8 |
31 | 7 | | | | | | | \Box | | | | | | | | | | | | | | | | | Ĭ | RЕ | E : | _# | AN | DΒ | 00 | N. | QĘ | 14 | ųρ | RA | اسالا | cs | | | _ | | | L. | _ | | _ | _ | | <u> </u> | _ | _ | _ | _ | _ | | | | _ | | | | | | IN | ς. | è | Ве | AT. | ER | 5 | 51 | H | ΕD | | ļ | _ | | | _ | <u> </u> _ | | _ | ـ | - | | | - | <u> </u> | - | _ | | _ | | _ | | | _ | | | AB | LE | క | 5 | -5 | 1 4 | 5 | -7 | _ | _ | | | _ | | _ | | - | _ | - | ├- | - | - | - | - | - | - | - | _ | - | | 4 | | | | | | - | _ | | | - | <u> </u> | - | | - | | | - | - | | _ | - | - | - | - | - | - | - | - | ├- | - | - | - | | - | \vdash | \dashv | | Н | - | | | - | _ | -3 | 5 | | | - | - | - | | | | - | - | | | ├- | - | - | - | - | - | - | - | - | - | - | - | - | \vdash | \dashv | | | | Q | <u>.</u> | C | 1 | 7 | | | - | - - | | - | | | | - | | _ | | ├ | - | - | ╁ | | | - | - | - | - | - | - | | - | \dashv | | H | - | | — | | <u>Г</u> | | | AR
. 7 | | 5 | W | | H | | _ | 0 | 7 | ,- | - | ┢ | - | | ├- | - | ┢╌ | - | - | - | - | \vdash | - | | | ᅴ | | - | | Н | _ | - | c | 2 <u>.</u> | | .0 | | - | H | | 0 | .7 | 0.4 | -0 | • (| _ | | - | _ | \vdash | - | - | ┢ | | _ | | - | ┢ | - | | | ᅱ | | | | | - | | > | ٦ | د | 2 | - | | n | Í | ب | | 1 | \vdash | | | - | - | | | | | Ι- | <u> </u> | - | | | | | | | ┪ | | | | EL | ΕΛ | | | | Н | | | \vdash | L | | | | C | | | _ | _ | | Q | | 1 | | | | | | | | | | | \neg | | | | | | | | | - | | | | _ | US | 5 | 49 | 5 | | | - | | | | | 34 | | | | ٥. | 7 | | | | - | | - | 0 | .5 | | | | 34 | | | | ၁. | 7 | | | | | 28 | | | | | | | | | L | | | | | | | | | L | L | L | | | | | | Ĺ | | | | <u> </u> | | _ | | | _ | L | | L | _ | | | _ | | _ | L | _ | | | _ | | | <u> </u> | | _ | _ | L | ٥ | .7 | _ | _ | | 34 | _ | | | 3. | ဝဍ | | | | 2 | 37 | <u> </u> _ | _ | ļ | | _ | <u> </u> | _ | igspace | <u> </u> _ | _ | | | _ | | | | | _ | _ | _ | | _ | _ | _ | L | | | | | 1 | _ | | | | L | _ | _ | L | <u> </u> | _ | | L | _ | - | <u> </u> | | | | _ | | Ш | | | | _ | _ | | 1 | _ | L | | 37 | <u> </u> | _ | | Н | _ | | _ | _ | 4 | 13 | - | - | | - | | _ | <u> </u> | <u> </u> | | ļ | _ | | _ | | Ш | _ | | <u> </u> | - | _ | _ | | _ | <u> </u> | _ | <u> </u> | _ | _ | | arphi | _ | <u> </u> | | | _ | _ | - | | - | _ | - | - | | - | - | | <u> </u> | _ | | | _ | | | _ | <u> </u> | _ | | ٦ | | - | 1 | 40 | <u> </u> | _ | | ${\mathbb H}$ | <u> </u> | | - | | 11 | 95 | - | - | - | - | - | ├- | - | <u> </u> | ├- | | - | | | | _ | - | _ | _ | <u> </u> | - | | _ | - | - | - | - | - | - | _ | H | | - | | - | - | - | - | | | - | ├ | - | - | - | }_ | - | - | | \dashv | | <u> </u> | _ | | _ | | - | | 3 | _ | - | ┦ | 43 | | | _ | H | - | | | - | ಶಾ | 44 | - | - | - | - | ├ | - | - | ┼- | | - | - | - | { | | - | - | - | <u> </u> | - | - | - | - | - | - | - | - | - | - | _ | H | - | - | | - | - | _ | - | ┼- | - | \vdash | \vdash | - | - | - | - | - | | | | | H | - | - | - | - | ├- | - | 4 | - | - | - | 46 | - | - | _ | H | - | - | _ | - | 35 | 27 | - | - | | ╢ | - | - | - | ┼ | ╁╌ | - | - | | \dashv | | ┝ | - | - | - | - | - | ├─ | - | - | - | | | - | - | - | H | - | - | - | - | _ | _ | _ | +- | - | ├- | - | - | - | ╁╌ | ├ | - | | | ㅓ | | - | - | - | - | - | - | - | 5 | - | - | - | 49 | - | - | - | H | - | - | - | - | 50 | 30 | - | ┼ | - | \vdash | \vdash | - | | - | ╁╌ | - | - | | - | | 68 | P. | | - | - | - | _ | . 2 | _ | - | ۲. | 49 | - | - | - | \vdash | - | | - | - | 54 | 1.7 | - | | ╁╴ | | \vdash | | - | | \vdash | - | <u> </u> | | | | 1745 | | - | - | 1 | | - | - 2 | 3 | | Τ' | لام | } | | - | ╁ | | - | - | | 24 | حار | - | +- | | \vdash | \vdash | | 1 | 1 | T | | | | \dashv | | \vdash | | | | | 1 | | 6 | | | ١, | 49 | _ | | | - | 02 | | | | 10/0 | 13 | | - | | | \vdash | | | | 1 | | | | \neg | | Г | | | | | T- | | " | T | 1 | Γ' | 7-2 | - | | | <u> </u> | - | | _ | | , m | | | 1 | Γ | | | | | | | | | | | | | | | | | | Γ | | Γ | | | | | | | | | | | | | | | | Γ | | | | | | | L | Γ | \Box | | | | | | | 10 | P | 0 | F | D | AM | | L | 0 | VΕ | RT | OP | PIN | 16 | E | ١٥ | we | <u>.</u> | | | | | | | L | | | | | | | | | | | | l | 1 | } | 1 | Į | l | | | | L | <u>L'</u> | _ | _ | L | Ĺ | _ | _ | L_ | | L | _ | 1 | 1 | | L | _ | L | <u> </u> | _ | L | L | L | | _ | | L | _ | b. | c | 1 | 13/ | | L | ٥ | = | | 63 | _ | , | | Ļ | <u> </u> | | | <u> </u> | _ | ļ
t —— | _ | | _ | L | _ | | _ | _ | L | _ | | | | | _ | _ | Ŀ | _ | _ | 1_ | L | _ | 1 | - | 45 | ď | _ | Ц | 60 | þ <u>′</u> | RT | Ł | 5 | o' | ᄓ |) _ | _ | _ | - | L | <u> </u> | _ | | <u> </u> | L | _ | _ | | | | <u> </u> | | _ | <u> </u> | _ | igspace | <u></u> | _ | _ | <u> </u> | 1 | 1 | _ | <u> </u> | _ | <u> </u> | - | <u> </u> | <u> </u> | <u> </u> | | _ | _ | ↓_ | <u> </u> | | <u> </u> | _ | | - | | <u> </u> | <u> </u> | | \Box | | L | - | - | _ | - | _ | _ | _ | - | <u> </u> | ↓_ | _ | _ | _ | - | <u> </u> | - | | _ | <u> </u> | | | - | - | _ | | | ╁ | }_ | | <u> </u> | _ | - | | | | <u> </u> | | | | L | <u> </u> | | | | <u>L</u> | L_ | | | | | _ | <u> </u> | L | | | <u> </u> | | 1 | <u> </u> | <u>_</u> | Ц. | L. | | | ┸_ | Ц. | <u> </u> | | | | | JOB | | \ A4 (| M 1- | | | · |) C | | <u>-</u> |)Aı | | | | | | | | | | | ET I | NO. | | | СНЕ | CKE | D B | Ŷ | | DA | rE | | | _ | |-----------|-----|-------------|----------|------------|----------|----------|----------|-----|----------|----------|--------------|------|----------|----------|----------|----|----------|----------|----------|-----------------|----------|------------|----------|------------|----------|---------------|----------|------|----------|----------|----------|------------|------------|-----| | SUB. | JEC |)/*\/
:T | 711 | 1 | _ | 2/1 | \LE | -1 | | A | <u> </u> | | | | | _ | | _ | | | 7/ | | | _ | CO | MPU | TED | 87 | | DA | | | | | | (| G/ | 49 | E_ | D | 474 | | _ | C | LA | VE! | 2 <u>A</u> (| CK | C | LRE | EK | _ | W | ATE | RE | SHE | D | | | | | ω | CL | | | ١ | /15 | 9/8 | 51 | | | | | | | | L | RΕ | E: | | vs | عو | <u>.</u> | 5 | UR | FA | CE | | مدر | TE | R | RE | cc | RD | 5 | (F | br. | Lω | AT | ER | ړ | EΑ | ود | ١ | ND | hc | AΤ | ED | ١: | | | | | | Ŀ | L | | Ĺ | | | | Ŀ | L | | L. | Ĺ | | L | | | | | | | L. | | | | | | L | | Ľ. | | | | | | | | | | | | <u> </u> | | | L | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | | ω | ΑŢ | ER | | L | G | AG | E | L | L | صا | CA | ΠO | 0 | 0 | RA | الملا | AG | E | | <u></u> | ŁΑ | | | | ٥ | AI | E | | | CF | 6 / | | | | | Ų | ΕΛ | R | | | | # | | | L | | | | | | Α | RE | Α | | | | 0 | (c- | <u>(3)</u> | | | | | | | | 15 | R M | 11. | | | | | <u> </u> | | | | | | | | | | | L | | _ | | Ĺ_ | | | | _` | Ĺ | | L | | | | | 匚 | | | | | | | _ | | <u> </u> | | <u> </u> | 1- | 3⁄0 | 12 | L_ | ھا | CL | الحط | ERA | CK | L | 6 | 0. | 6 | | | | 94 | a | | | /د | 2 | 16 | | | 3 | Э. | 0 | | | | | | 96 | <u>b</u> - | L | 96 | 8 | | OP | ER | AT | ED | А | 5_ | A | C | рИ | TIE | w | ٥U ⁵ | <u> </u> | RE | င | RD | 5 | | ho | Ľ | | | | | | | | _ | ' | | | | | | | | | | ١ | 96 | 8 | | | 1- | 36 | ıa | | | ے | AM | E | | | 4 | 0. | 6 | | | | ನಿ8 | 0 | | | 4/ | 25 | 16 | 8 | | 3 | 1. | , | / | | | | | | | | | | | | N | Lı | 96 | - و | | | be | ER | ΑT | ΕD | A | 5 | A | С | QΕ | ΤĒ | ۔ج | 100 | E | ρ | AR | TΙΑ | <u>_</u> | ٤E | ဌ | RD | S | TΑ | Ы | N | | | | | 1 | 96 | و | | | | 36 | | | | | AM | | | | | 0. | | | ' | | 94 | | | | | 25 | | | | • | ລ. | 0 | | | \Box | | | Ï | 7 | | | | | | | | | | | 1 | 97 | 0 | | ٥ | 13 | 601 | ಎಂ | 0 | П | | 11 | | | | | u | | | | | 6 8 | 0 | | | 4/ | 3/ | 70 | | | ١ | ١. | ၁ | | | | | | | | | | | | | Г | | | | | | | | | | | | | | | | 7 | 7 | | | | | | | | | | 1 | 97 | 1 | | | 5 | AM | E. | | | | 13. | | | | | 11 | | | | | 68 | 4 | | | 5/ | 4/ | 71 | | | ı | 1. | 3 | _ | | | | | | | Г | | | _ | | | | | | | Г | | | | | | | | | | | 1 | 7 | | | | | - | | | | | 1 | 97 | ລ | | | | n | | | | | " | | | Г | | 11 | | | | 1 | 74 | 0 | | | 6/ | ၁၁ | 17: | b | | ာ | გ. | 7 | | | Ť | | | | | | | | | | | | | | | | | Т | | | | | | | | | 7 | , | | | | | | | | | | 1 | 97 | 3 | | | | 14 |
| | \vdash | | n | | | | | 11 | \vdash | | | 4 | 96 | 0 | | | 1. | 30 | /7 | 3 | |
გ | 1 | 8 | _ | | | ٠ | 7 | | / | | П | | | | _ | | T | 1 | 97 | 4 | | | 13 | اها | ha: | | | GA | ωA | Mil | rv | | - | . 2 | 8 | | | ٦ | 67 | | | | 7/ | 5 | /7 | 1 | | 10 | 95 | | | | T | - | | | | | | | مد | | | C | RE | EK | @ | - | _ | | - | | | | 21 | | | | 7 | _ | | 1 | П | | | | | | | | | Π | \vdash | Г | | | | | H | _ | Æ | | | | | Т | | | | | | | | | _ | | | | | | | | _ | | 1 | , | 97 | 5 | | | 12 | 61 | 20 | 5 | | | | | | | 7 | 0. | 10 | | П | , | 62 | 0 | | | 9 | 26 | /7 | 5 | | ار | 9 . | 7 | _ | | \exists | • | | | | Γ | | | | | | | | | | | - | <u> </u> | ٧ | | | | 00 | | | | -7 | - | | | | - 19 | | | _ | | 7 | , | 97 | 5 | 1 | | 13 | 61 | 10 | 2 | 7 | | ٧E | DA. | ٧, | | _ | | | | | | 4 | 2 | | | /2 | Źπ | /7 | 5 | | | | | _ | | T | - | -1 | | | Ĭ | 1 | <u> </u> | | - | č | RE | EK | 6 | | | | | | | (e | 45 | | FLO | ω) | | Ψ, | 111 | | | | | | | _ | | + | _ | | Γ | | | _ | Г | | | 7 | EIJ | ĒΝ | 415 | Œ | | | | \Box | | \sqcap | | | | _ | Т | | | | Г | П | | | | | | \dashv | , | 97 | Va | | 6 | 12 | 61 | ನಿಗ | 5 | \vdash | | П | | | | 1 | 0. | 6 | | | 2 | ລາ | 7 | | | ı | /aa | 171 | | | | 4. | 3 | _ | | \dashv | | | <u> </u> | | Ĭ | _ | " | | _ | | | | | | | | <u> </u> | _ | _ | | | DL_2 | _ | | | '' | 84 | -114 | | | | 7. | | _ | | \top | 1 | 97 | 7 | | <u> </u> | | 11 | | | Г | | | | | Г | | 11 | | | | ı | 04 | _ | | | 2 | 14 | /11 | | | - | 7. | 2 | | | \dashv | | | 1 | \vdash | | Т | | | Г | Г | | | | | Г | | | | \Box | | | <u></u> | - | | П | 7 | 7 | | | | | 4- | <u>~</u> | _ | | \dashv | , | 97 | 0 | i | Г | | " | Т | | Г | | | | | М | | " | П | | | ٦ | 71 | | | М | 1/ | ၁/ | 79 | Г | | 4 | 4. | 7 | _ | | + | | | | T | T | | | | | | | | | | М | | | П | | | 9 | | | | | '/ | 9/ | | _ | | - 1 | 74 | 4 | _ | | \dashv | | - | T | \vdash | \vdash | \vdash | Г | Г | \vdash | | | Н | | \vdash | | | | М | _ | Н | _ | | | | | | _ | | | \vdash | | _ | \vdash | _ | | \dashv | _ | | | | <u> </u> | | | | | | <u> </u> | | | | | | <u> </u> | | \vdash | Н | | | | | Н | | | _ | | | | \neg | | | | \dashv | | | | | | | | | | П | | П | | Н | П | | | | | | \dashv | | | | \vdash | | | | \vdash | \vdash | | | \Box | _ | | \top | | _ | 1 | | \vdash | | \vdash | | | | | | | | | | | | | | | | | | H | | | _ | | | | - | \vdash | _ | | \dashv | - | | - | 1 | | - | \vdash | - | | | | | \dashv | Н | \vdash | _ | \vdash | | _ | \vdash | | | \dashv | _ | \vdash | | H | | - | H | - | - | | | | \dashv | - | | | | \vdash | | \vdash | | | \vdash | | | | | - | _ | _ | | - | \vdash | \vdash | _ | | _ | \vdash | _ | | | - | ├- | \dashv | - | | _ | | + | | | | | 1 | | - | - | | \vdash | H | | | | Н | _ | | \vdash | \dashv | | | | | _ | Н | - | Н | | \vdash | \vdash | | | _ | | | - | | - | | | - | | | | | - | H | H | | | | _ | - | | Н | \vdash | | | | _ | H | | \vdash | _ | _ | \vdash | \dashv | | \dashv | | | _ | _ | | ١ | Ц. | | Ц | Ц. | | | | | | | \Box | | | Щ. | ш | لــــا | | لب | | | | لب | _ | \Box | | L | ш | | | _ | _ | SUMMIT ST. DAM NY-847 | ^ | | |------------------------------|----------------------------| | .48 | | | . 73 | | | (LAT. 43°-15'; LONG. 73-48' | | | .Ñ. | - | | 40°- | | | ¥ | щ | | 7 | 517 | | ړ | ¥ | | <u>8</u> | <u>د،</u> | | \aleph | 0 | | STATE SCHOOL | 7.4 MILES WEST OF DAM SITE | | 7 | بد | | NOSON | Ĭ | | HO. | 7. | | 1 | | | 949E | | | <u></u> | | | PRECIPITATION | | | RECORDED | | T = TRACE PEAK DYSCHARGE - CLANERACK CREEK - GAGE # 01561200 (DA = 60.6 59.MI.) | | bate: | JUNE 30,1973
4960 cf5 | JA, | JAN. 28, 1976
3390 cfs | | JULY
36 | JULY 5,1974
3670 cfs @ GAGE *0361030 | 000 | |-----|-------|--------------------------|---------------|---------------------------|------|----------------|---|---------| | | DATE: | 24-HOUR AMT. | DATE: | 24-HOUR AMT. | AMŢ. | : alw | (W=5.38 | 8 %.M.) | | | Se/9 | 0.34 | 61/1 | Į | | 6/2 4 . | 1 | | | | ્ર | ۲ | ્રેલ | ۲ | | 200 | (61.0 | | | | Le | 0.15 | ē | 1 | | 90 | 45.0 | | | | 88 | 1 | ee | 0.17 | - | Le | 10.0 | | | | 93 | 0.84 \ 2 | 56 | ۲ | | 96 | 0.01 | | | | 30 | 3.04 \ 3.80 | 40 | 0.07 | | 60 | _ | | | | 1/2 | `
 | አ
የ | ۲ | | 6/30 | 0.0 | | | | | | 9 c | 0.80 | | 1/1 | 61.0 | | | | | | Lc | l | | C. | | | | | | | 8 C | 0.99 | | W | 1.93 | | | | | | 60 | ۲ | | 4 | · - | | | | | | o <u>s</u> /- | ! | | ស | 1.16 7 1.79" | | | | | | | | | • | 0.63 | | | (X | | JUNE , 1973 | ` | , | | 7 | l | | JUNE, 1973 RAINFALL @ CHURCHTOWN RESERVOIR (DA = 1.07 59. ML.) 6.6 MILES SOUTHWEST OF DAM SITE 24-HOUR AMT. VAJE: 6/27 02/20 1/1 NOAA INDEX # 1483 #### 1-3612. Claverack Creek at Claverack, N. Y. Location.--Lat 42*12'54", long 73*43'46", on right bank, 70 ft ups roum from bridge on State Highway 9H, 0.5 mile south of Claverack, Columbia County, and 2.2 miles upstream from Tayhkanic Creek. Drainage area. -- 60.6 sq mi. Records available. -- March 1960 to September 1962, March 1963 to September 1968 (no winter record prior to October 1965) (discontinued). $\frac{\text{Gage.}\text{--Water-stage recorder}}{1929}$. Datum of gage is 139.77 ft above mean sea level, datum of $\frac{1929}{1929}$. Extremes.--Maximum discharge during year, 1,280 cfs Apr. 25 (gage height, 6.18 ft); minimim, 4.9 cfs Sept. 30. 1960-88: Maximum discharge, 1,940 cfs Feb. 26, 1961 (gage height, 7.68 ft); minimum, 0.8 cfs Nov. 19, 1964; minimum doily, 1.8 cfs Aug. 15, 1961. Remarks. -- Records fair except those for the winter period, which are poor. Occasional slight diurnal fluctuation at low flow caused by mill above station. | 5.43 | 000 | NOV | DEC | 1.43 | PEB | M40 | APR | MAY | JUN | JUL | AUG | SEP | |------------------|-------|----------|----------------|------------------------|------------|---------------|--------------------|-------------|-------|----------------|------|------| | PAY | oct | NOA | DEC | J AN | | MAR | | | | | | | | 1 | 4.6 | 9 4. | 17 | 5.5 | 60 | 27 | 130 | 101 | 52 | 55 | 16 | 7 2 | | 2 | ₹.1 | 4,0 | 1 4 | 5.5 | 190 | 24 | 127 | 85 | 50 | 56 | 1.4 | 7 4 | | 3 | 4.1 | 1.3 | 5 4 | 5.1 | 640 | 50 | 105 | 77 | 54 | 5 1 | 12 | 77 | | 4 | 7.7 | 1.2 | 74 | 30 | 250 | 23 | 97 | 99 | 90 | 49 | 11 | 4.1 | | 5 | 77 | 1 4 | 50 | 54 | 170 | 24 | 101 | 77 | 50 | 4 5 | 1 1 | 77 | | 6 | 9.3 | 1 4 | 4 3 | 2.7 | 1 5 0 | 2.0 | 8.9 | 65 | 4 4 | 42 | 11 | 1.6 | | 7 | H.1 | 13 | 3 ↔ | 27 | 100 | 1 8 | 8.2 | 61 | 4.0 | 37 | 1 1 | 99 | | A | 7 c | 1 2 | 4 -4 | 5.0 | 94 | 1 4 | 77 | 57 | 36 | 3.6 | 1 3 | 7.7 | | 9 | 77 | 1.5 | 40 | 5 0 | 70 | 23 | 75 | 5 5 | 3 3 | 3 3 | 17 | 6,4 | | 10 | 1 1 | 1.5 | 16 | 2 14 | 0.0 | 5.9 | 64 | 5 4 | 1 1 | 2.1 | 1,6 | 12 | | 11 | 1 4 | 1 1 | 5.3 | 27 | 54 | 4.0 | 65 | 49 | 5.5 | 30 | 1.4 | 11 | | 12 | 1.2 | 1 1 | 211 | 26 | 50 | 37 | 61 | 7.2 | 4 1 | 34 | 1 1 | 4.3 | | 13 | 1 1 | 1) | 255 | 26 | 45 | 3.2 | 6 () | 77 | 6.14 | 4 1 | 10 | 12 | | 14 | 9 2 | 90 | 131 | 26 | 4.2 | 3 () | 57 | 64 | 52 | 3 1 | 10 | ٦,3 | | 15 | 4,6 | 1 1 | 97 | 2 5 | 39 | 3 1 | 5 5 | 57 | 4 4 | 54 | 9 4 | 41.3 | | 16 | 4.1 | ٠, | 77 | 24 | 17 | 54 | 51 | 5 4 | 69 | 26 | H.4 | э,н | | 17 | 44,1 | M .* | 56 | 2.5 | 15 | 524 | 4.9 | 66 | 215 | 2.5 | 4,4 | 5.3 | | i A | 4,6 | 40 | n 1 | 2.2 | 5.2 | 726 | 46 | 66 | 150 | 24 | 7.11 | 5.5 | | 19 | 0.0 | 1 1 | 50 | 2.2 | 5 () | 544 | 4 % | 74 | 107 | 27 | 7.4 | 5.4 | | 20 | H.1 | 13.4 | 56 | 2 1 | 24 | 404 | 4.5 | H () | 105 | 30 | 42 | 5.4 | | 71 | 4. | 6, 15 | 5.1 | .2.1 | 21 | 352 | 4.4 | 74 | 7.7 | 25 | 4.4 | 5.8 | | 22 | 4.3 | u G | '> 1 | 20 | , h | 544 | 4 5 | 6.7 | 9 4 | 23 | 10 | 5 4 | | 23 | 4.1 | 1.5 | 90 | 2.0 | 2.5 | ~ 4 () | 4 1 | 5 () | به ر. | 2.1 | 1.0 | 5.8 | | 24 | | 5 5 | 4 / | 20 | 24 | £ 5 3 | 59 | 7.1 | 5.1 | .2 € | 4.4 | 5.8 | | 75 | ٠,٠ | 3 4 | A () | S () | 24 | 126 | P 0 5 | b 4 | 51 | | H.F | 5.2 | | 26 | 26 | 4.2 | 41) | 211 | . 5 | 225 | 326 | 7 6 | 114 | 2.1 | 7.4 | 5.4 | | 27 | 17 | 5 15 | 17 | 2.4 | 2.3 | 174 | 1 44 | 51 | 127 | t۷ | 7 ≥ | 5 " | | . 1 | 1.2 | 3.0 | 3.6 | 210 | 4 | 150 | 141 | 4 11 | :1" | 1 😘 | 7. | 5.4 | | 29 | 1 1 | ., ., | 54, | 2.5 | .: 4 | 1 5 5 | 117 | ٠, د | *** | 1 ~ | 7.7 | 5.4 | | 10 | 44. | 2.0 | 3.5 | 5 () | | 119 | 101 | / 1 | 7.9 | 1 | 77 | 5.4 | | 31 | 44 | | 14 | 20.63 | | 103 | | 5 7 | | 1.7 | 7,7 | | | TOTAL | 51.5. | 4 4 () 1 | 1, 11.14.65 | 806 | 4357 | 3,545 | 3.350 | 51.55 | 41 | 46.4 | 1207 | 2074 | | MEAN | 10.1 | 16.0 | 60.8 | 26.0 | 81.3 | 180 | 112 | 66.2 | 72.6 | 31.2 | 10.3 | 6.91 | | MAA | 26 | 4.2 | 255 | 52 | 640 | 726 | 805 | 101 | 215 | 5.5 | 17 | 11 | | MIN | 7.2 | 8.6 | 1.4 | 24 | 23 | 18 | 41 | 48 | 31 | 17 | 7.2 | 5.4 | | CF5M | . 17 | . 26 | 1.00 | . 4 3 | 1.34 | 2.97 | 1.85 | 1.09 | 1.27 | .51 | . 17 | - 11 | | IN. | . 19 | . 10 | 1.16 | . 49 | 1.45 | 3,43 | 2.06 | 1.26 | 4ذ. [| . 59 | . 20 | .13 | | CAL YR
WYR YR | | AL 27,50 | | MEAN 75.4
MEAN 56.0 | MAX
MAX | | 4IN 7.2
4IN 5.4 | CFSM 1. | | 16.88
12.58 | | | PEAR DISCHARGE (BASE, 700 CFS) | DATE | TIME | G.HT. | DISCHARGE | PATL | TIME | G.HT. | DISCHARGE | |-------------|--------------|-------|-----------|------|------|-------|-----------| | 7-18
5-3 | 0400
0800 | | 1,100 | | 2309 | | 1,070 | ### FLOODS IN NEW YORK, 1973 and 1974 By F. Luman Robison, William N. Embree, and Bernard Dunn #### ABSTRACT Widespread flooding and flood damage in New York State occurred in calendar years 1973 and 1974. A discussion of specific floods includes a description of the precipitation events and flood damages, location maps, and tables listing peak stages and discharges. The greatest flooding damage in New York State in 1973 was caused by lakeshore flooding of Lake Ontario on March 18 and 19 and by heavy rainfall in the eastern and
southeastern regions June 28-30. Gale-force winds on Lake Ontario created waves that caused considerable shoreline damage from Niagara County to Jefferson County on March 18 and 19, 1973. On June 28-30, 1973, a heavy rainfall drenched Sullivan and Delaware Counties and caused the most serious flooding since 1947, then moved through the rest of the Catskills and lower Hudson Valley. Rainfall averaged between 4 and 7 inches (100 and 180 millimetres). At Claverack, in Columbia County, Claverack Creek had the highest discharge of record (4,960 cubic feet per second or 140 cubic metres per second) on June 30. On May 16 and 17, 1974, a nearly stationary weather front over most of central and Western New York State produced widespread showers and thunderstorms. Albion in Orleans County and Rochester in Monroe County were the hardest hit communities. Thunderstorms July 2 and 3, 1974 caused much flooding from the eastern Finger Lakes through the Mohawk River to the Schoharie Valley. Rainfall exceeded 4 inches (100 millimetres) in 12 hours at many reporting stations. Considerable flooding occurred in Syracuse, Utica, and other communities in Onondaga and Oneida Counties. On July 5, a series of brief, violent storms occurred in Columbia County. About 4 inches (100 millimetres) caused as much flooding and damage as in the flood of June 1972. On October 29, 1974, the floor of an elevated section of the Barge Canal collapsed into a sewer project tunnel being bored under it near Bushnells Basin in Monroe County. Minor floods within the State are reported by region for each year. Figure 4.--Rainfall in the eastern and southeastern regions of New York, June 28-30, 1973. (Daily precipitation data furnished by National Weather Service.) #### DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES #### Annual maximum discharge at crest-stage partial-record stations during water year 1973 -- Continued | | | | | | | Annuel | nex imus | |----------------|--|---|-----------------------------|--------------------------------|--|--------------------------------------|--| | Station
No. | Station name | Location | Drainage
area
(sq mi) | Period
of
record | Date | Gage
height
(feet) | Dis-
charge
(cfs) | | | | Hudson River basinContinued | | | | | | | 01354300 | Plotter Kill at
Rynex Corners, | Lat 42 ^{1,0,1} 6", long 74*04'20", Schenectady
County, at bridge on State Highway 159, at
Rynex Corners. | 3.70 | 1958,
1960-68,
1970-73 | 4- 4-73 | 4.60 | 252 | | 01361200 | Claverack Creek near
Claverack, N. Y. | Let 42°12'54", long 73°43'46". Columbia County,
on right bank, 70 ft upstream from bridge on
State Highway 9H, 0.5 mile south of Claverack. | 60.6 | 1960-68
1969-73 | 6-30-73 | 12.38 | 4,960 | | * 01361900 | Shingle Kill at Cairo, N. Y. | Lat 42°18'22", long 74°00'15", Greene County,
at bridge on fown road at Cairo, about 100 ft
east of State Highway 32, and 0.8 mile
upstream from mouth. | 13.9 | 1953,
1960,
1967-73 | 6-30-73 | 4.94 | 358 | | 01362100 | Roeliff Jansen Kill
near Hilledale,
N. Y. | Lat 42°09'13", long 73°31'19", Columbia County,
at bridge on county highway off State High-
way 22, 1.8 miles south of Hillsdale. | 27.5 | 1958-60≠
1963-64
1968-73 | 6-30-73 | 9.78 | 3,280 | | 01 364400 | Plattekill Creek at
Mount Marion, N. Y. | Lat 42°02'24", long 73°59'57", Ulster County, on downstream left wingwall of bridge on town road just off Giraco Turmpike, 0.6 mile west of Mt. Marion, and 2.6 miles upstream from mouth. | 36.6 | 1962-64,
1968-73 | 6-30-73 | 5.02 | * | | 01 366950 | Coxing Kill near High
Fails, N. Y. | Lat 41°49'54", long 74°06'38", Ulster County,
on bridge on Coxing Kill Road off State
Highway 213, 1.0 mile east of High Falls. | 12.6 | 1962-64
1966,
1968-73 | 6-30-73 | 4.80 | • | | 01368713 | Wawayanda Creek at
Durland, N. Y. | Lat 41°16'44", long 74°18'20", Orange County,
on bridge on State School Road, at Durland,
0.1 mile downstreem from Wickham Lake, and
2.5 miles northeast of Warwick. | 5.15 | 1971-73 | 6-30-73 | 15.83 | 51 | | 01368724 | Long House Creek at
Bellvale, N. Y. | Let 41°15'10", long 74°18'30", Orange County, at bridge on Iron Forge Road, at Bellvale, and 1.9 miles upstream from mouth. | 11.8 | 1971-73 | 6-30-73 | 16.99 | 345 | | 01372040 | Crum Elbow Creek at
Hyde Park, N. Y. | Lat "1"47"24", long 73"55"53", Dutchess County,
at bridge on Hyde Park-East Park Road, at Hyde
Park, and 0.3 mile east of U.S. Highway 9. | 18.6 | 1959-62≠
1963-73 | 6-30-73 | 4.06 | 373 | | 01374460 | South Branch Minisce-
ongo Creek at
Letchworth Village,
N. Y. | Lat +1°12'15", long 74°01'54", Rockland County,
200 ft downstream from Letchworth Village
road and pond, and 1,000 ft downstream from
Pallsades Interstate Parkway, at Letchworth
Village. | 5.83 | 1960-73 | 6-30-73 | 3.36 | 237 | | 01376570 | New City Brook near
New City, N. Y. | Lat +1*10'09", long 73*<8'46", Rockland County, at bridge on road north of Christle Airport, 0.5 mile east of Zukov Road, 0.8 mile upstream from mouth, and 1.1 miles north of New City. | 2.39 | 1972-73 | 2- 2-73 | 7.50 | 1,450 | | | | Hackensack River basin | | | | | | | 01376600 | Hackensack River at
Brookside Park,
N. Y. | Lat 41°10'18", long 73°58'24", Rockland County, at Brookside Park, 400 ft upstream from State Highway 304, 1,300 ft upstream from DeForest Lake, 0.8 mile downstream from unnamed tributary, and 1.2 miles from Lake Lucille. | 13.2 | 1959-63#
1967-73 | 2- 2-73 | 7.42 | 1,350 | | 01376690 | East Branch
Hackensack River
near Congers, N. Y. | Lat *1°07'32", long 73°57'14", Rockland County, about 0.1 mile downstream from small pond, half a mile upstream from DeForest Lake, and 2 miles south of Congers. | 6.86 | 1960,
1968-69
1971-73 | 8-19-60
5-29-68
8- 5-69
9-14-71
6-22-72
2- 2-73 | 9.12
9.29
9.21
9.79
9.95 | 148
186
167
346
415
691 | | 01377180 | Pascack Brook at
Spring Valley,
N.Y. | Lat 41°06'45", long 74°02'00", Rockland County, on road to Orange and Pockland Utilities substation, and 0.7 mile east of Spring Valley. | 2.13 | 1972-73 | 2- 2-73 | 5.63 | 684 | Operated as a continuous-record gaging station. Discharge not determined. Also a low-flow partial record station. #### Pischarge measurements made at miscerlaneous sites during water year 1974--Continued | | | | | Drainage | Measured
previously | Seasal | rements | |------|---|-------------------------|--|-----------------|------------------------|--|------------------------| | Sti | ream | lichutary to | Location | atea
(sq.ml) | (water
years) | Date | ischarge (ts) | | | | | Hudson River basinContinued | | | | | | One | 359830
zaque Chile
zek | Concumistation of the R | Lat (27:3) 69", long 73755'40", Albany County,
it fixeds: a State Hickory 52, and 125 order
(2.9 km) southeast of Clarksville. | 12.4 | 1952,1+20
1973 | 9- 4-7- | •1.5 | | | 359404
utl Sprayt | Coeymans creek | Lat 42° 31° 40°, joing 73° 50° 50°, Albany County,
at bridge on domity discours 101, 0.10° mate
(0.4 km) with 41 South methichem. | - | 1970
1973 | Re Meda | .5 | |
Har | 359915
nnacro18
cek | Hudson River | fair 2029/44", long 737/8/46", Albany Courte, at bridge on State Stockary 32 and 14%, its male (4.3 %) spaces from State (4.4 %), us mile (1.3 %) east of Pormasville, and 0.5 mile (1.3 km) spaces from Alcove Reservoir. | 13.2 | (963, 19
(973 | ** *- '* | •1 | | | 359916
Iver Creek | Hannacrois Creek | "Lat =2°28'25", long 73°59'17", Albany County, at culvert on Boombover Road near Dermansville. | - | 1970
1473 | M=12=74 | 0 | | 811 | 359917
Iver Creek
Ibutary | Cilver Creek | Lat 42°29°01", long 73°59°47", Albany County, at culvert on Boomhower Road at hormonszelle. | ٠٠٠. | 1970
1970 | 4- 4-14 | *.24 | | | 361020
awamack Creek | Hidson River | <pre>tait #25105117, long 735305 647, columnta
County, at bridge on town road, 0.4 wife
(0.6 km) east of Hartenwille, and 0.6 mile
(1.1) km) upstream from 0.ker Pout outlet.</pre> | 5.25 | | 14 (41). | 4,450 | | | 361465
x Creck | Catskill Creck | that 0272736", long 74710"53", Albany county,
at bridge on Pearson doid, 1.9 miles a oftram
from mouth, and 0.9 miles northeast or Preston
Bollow. | 33 | 1970,73 | 8-11-74 | *3 | | 1 41 | 3614#/
tskill Creek
lbutary | Catskill (reex | <pre>Lat 42*26'11", tong 74*09'08", Albany County, at bridge on Niles Real, 120 mile (220 kg) vest of Medusa.</pre> | 6. 3 | 1970
1971 | 8-12-74 | *7 | | | 362003
11 Brook | Zitskill Creek | Lat 42°16'03", long 74°53'40, Greene County, 0.5 mile (0.8 km) upstream from unnance tributary, 0.7 mile (1.1 km) south of South Carro, 0.6 mile (1.0 km) upstream from old state Highway 3, and 3.5 mile (1.3 km) upstream from mouth. | t . : | 1972-11 | 10-16-73
12- 1-73 | .20 | | | 36200-
11 Srook | Catskill (reck | Lat 92°17'10", long 73°57'32", Greene Wounty, U.4 mile (0.6 km) upstream from unnahed tributary, 0.4 mile (0.5 km) upstream from old State Highway 23, 0.5 mile (0.5 km) south of South Carro, and 0.6 mile (1.5 km) upstream from mouth. | | 1477-13 | 10-16-79
12- 7-79 | 0
7 | | | 362005
11 Brook | Catskill creek | Lat 42°16'19", long 73°57'19", Greene County, 0.1 mile (0.2 km) upstream from analocal tributary, 0.3 mile (0.5 km) south of "south Cairs, .3 mile (0.5 km) upstream from 1d State Hichway 23, and 0.4 mile (0.6 km) upstream from mouth. | 1.31 | 1971-79 | 10-16-73
12- 7-73 | 1 .20 | | | 362482
aver <f11< td=""><td>Esopus Creck</td><td>Lat 42°04'03", long 74°13'54", there county, at bridge on State Highway 212, 0.0 mile (1.0 km) southwest of Willow, and 3.3 miles (5.3 km) questream from routh.</td><td>14.4</td><td></td><td>12-21-73</td><td>4,130</td></f11<> | Esopus Creck | Lat 42°04'03", long 74°13'54", there county, at bridge on State Highway 212, 0.0 mile (1.0 km) southwest of Willow, and 3.3 miles (5.3 km) questream from routh. | 14.4 | | 12-21-73 | 4,130 | | In | 368495
digot Creek
ibutary | Indigot Creek | Lat 41°25'16", long 74°31'08", drange County, at bridge on Manning Road (Town of Mt. Hope, Route 12), 1.3 miles (1.1 km) aparters in from mouth, and 1.6 miles (2.6 km) south of Mount Hope. | 5,78 | 1473 | 4-12-74
5-30-74
7-30-74
4-10-74 | 21
3.6
13
7.5 | | 91 | 368705
ckham Lake
lbutary | Wickham Lake | Lat \$171.8%, long 7471713%, drange County, at bridge on Kings Highway at lake, 0.6 mile (1.0 km) opstream from mouth, and w.2 miles (6.8 km) northeast of Warwtok. | 6,68 | 1971-73 | 11-30-73
2-24-74
4-36-74
5-16-74
7-23-74 | 7
1.8
-41
0 | | • | Base flow. | | THE PARTY OF P | | | 7-21-7% | | ^{*} Base flow. T Trace. ## DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES #### Discharge measurements made at miscellaneous sites during water year 1975--Continued | | | | | Drainage | Measured
previously | Measu | rement s | |---|---|--------------------------------|---|-----------------|-------------------------------|--|--| | | Stream | Tributary to | Location | aren
(sq mi) | (water
years) | Date | Discharge
(cfs) | | | | | Hudson River basin Continued | | | | | | | 01359915
Hannacrois
Creek | dudson siver | Lat w."19"49", long 73"58"46", Albany County, at tridge on State Highway 32 and 143, 0.2 mi (0.3 km) upstream from Silver Creek, 0.8 mi (1.3 km) upstream from Alcove Reservoir. | 13.2 | 1963
1970
1973-74 | 9- 2-75 | * 2.6 | | | 01354916
Silver Creek | Hennacrois Greek | Lat w2°28'24", long 73°59'17", Albany County, at culvert on Boomhower Road near Dormaneville. | - | 1970
1973-74 | 9- 2-75 | • <.1 | | | 01359917
Silver Creek
Tributary | Silver Creek | Lat 42°29'01", long 73°59'37", Albany County,
at culvert on Boomhower Road at Dormansville. | .60 | 1970
1973-74 | 9- 2-75 | • .40 | | - | 01361102
Claverack Creek | Stockport Creek | Lat 42*15'10", long 73*39'56", Columbia County,
20 ft (6.1 m) downstream from confluence of
Agawamuck and North Creeks in Mellenville. | | • | 6-11-75 | *42 | | | 01361200
Claverack Creek | Stockport Creek | Lat 42°12'54", long 73°43'46", Columbia County, 70 ft (21.3 m) upstresm from bridge on State Highway 9H, 0.5 mi (0.8 km) south of Claverack, and 1.2 mi (3.5 km) upstream from Taghkanic Creek. | 60.6 | 1971
1973 | 6-10-75
6-11-75 | 56
*49 | | | 01361300
Taghkanic Creek | Claverack Creek | Lat 42°12'59", long 73°45'35", Columbia County, at bridge on County Highway 29, 0.2 mi (0.3 km) upstream from Loomis Creek, 0.9 mi (1.4 km) upstream from mouth and 1.5 mi (2.4 km) southwest of Claverack. | 83.0 | 1447a
1956-51a
1964-65a | 6-11-75 | *44 | | | 01361340
Claverack Creek | Stackport Creek | Lat 42°18'44", long 73°44'34", Columbia County, at bridge on county road in Stockport, and 0.4 mi (0.6 km) upstream from mouth. | | 1971 | 6-11-75 | 126 | | | 01361465
Fox Creek | Catskill Creek | Lat 42°27'46", long 74°10'53", Albany County,
at bridge on Pearson Road, 1.9 mi (3.1 km)
upstreum from mouth, and 1.9 mi (3.1 km)
northeast of Preston Hollow. | 3.43 | 1970
1973-74 | 9-10-75 | · .08 | | | 01361480
Catskill Creek
Tribucary | Catskill Creek | Lat 42°26'11", long 74°09'08", Albany County, at bridge on Niles Road, 1.0 mi (1.6 km) west of Medusa. | 6.58 | 1970
1973-74 | 9~10-75 | * .07 | | | 01368495
Indigot Creek
Tributary | Indigot Creek | Lat 41°25'16", long 74°31'08", Orange County, at bridge on Manning Road (Town of Mt. Hope, Route 12), 1.3 mi (2.1 km) upstream from mouth, and i.6 mi (2.6 km) south of Mount Hope. | 5.78 | 1973-74 | 10- 9-74
12-31-74
2-19-75
3-31-75
5- 8-75
6-20-75
7-31-75
4-11-75 | 1.7
8.1
5.3
20
8.4
3.6
1.1 | | | 01]68705
Wickham Lake
Tributary | Wickham Lake | Lat 41°17'38", long 74°17'33", Orange County, at bridge on Kings Highway, at Lake, 0.6 mi (1.0 km) upstream from mouth, and 4.2 mi (6.8 km) northeast of Warwick. | 0.68 | 1971-74 | 3-10-75
4-30-75
6-16-75
7-22-75
8-22-75 | .27
.17
.06
.72 | | | 01368713
Wawayanda
Creek | Pochuck Creek | Lat 41°16'44", long 74°18'20", Orange Gounty, at bridge on State School Road, at Durland, 0.1 mi (0.2 km) downstream from Wickham Lake, and 2.5 mi (4.0 km) northeast of Warwick. | 5.15 | 1967
1971-74 | 3-10-75
5- 2-75
6-16-75
7-22-75
8-22-75 | 10
4.9
3.9
18
1.5 | | | 01368722
Long House
Creek | Wawayanda Creek | Lat 41°12'53", long 74°20'02", Orange County, at bridge on Cascade Road, 1.0 mi (1.6 km) downstream from Cascade Lake, and 3.0 mi (4.8 km) southwest of Bellvale. | 8.35 | 1973-74 | 3-10-75
5- 1-75
6-16-75
7-22-75
6-29-75 | 12
6.6
13
51
5.9 | | | 01368724
Long House
Crack | Wawayenda
Creek | Lat 41°15'10", long 74°18'30", Orange County, at bridge on Iron Forge Road, at Bellvale, and 1.9 mi (3.1 km) upatream from mouth. | 11.8 | 1971-74 | 3-10-75
5- 1-75
6-16-75
7-21-75
8-22-75 | 18
11
15
77
• 1.9 | | | 01368740
Warwick
Reservoir
Outlet
Tributary | Warwick
Reservoir
Outlet | Lat 41°14'31", long 74°21'14", Orange County, at bridge on Ball Road, 0.5 mi (0.8 km) upatream from mouth, and 1.0 mi (1.6 km) from Warwick. | . 56 | 1971-74 | 2-27-75
5- 2-75
6-11-75
7-21-75
8-20-75 | 5.1
.55
.29
1.7
.13 | ^{*} Base flow measurement. < Less than. ## Annual maximum discharge at crest-stage partial-record stations during water year 1979 -- Continued #### Annual maximum | Station No. | Station name | Location | Drainage
area
(mi²) | Period
of
record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | |-------------|---|---|---------------------------|--|---------------------|--------------------------|--| | | | Hudson River basin - Continued | | | | | | | 01249260 | Van Wie Greek
tributary near
Randall, NY | Lat 42°54'll", long 74°25'55",
Montgomery County, at culvert
on Brumley Road, 0.3 mi (0.5 km)
south of intersection with
Argisinger Road, and 0.9 mi
(1.4 km) southwest of Randall. | 1.03 | 1974-79 | 10-17-77
3- 6-79 | 3.77
3.50 | 67 | | 01349850 | Batavia Kill at
Hensonville, NY | Lat 42°17'17", long 74°12'55",
Greene County, on County Highway
40, at Hensonville, 0.7 mi
(1.1 km) upstream from Silver
Lake Outlet, and 1.8 mi (2.9
km)
upstream from Nauyo Stream. | | 1955,1960
1961-66,
1972,
1974,
1976,
1979 | 3-24-79 | 3.35 | • | | 01350900 | Beaverdam Creek
near Knox, NY | Lat 42°38'57", long 74°07'56",
Albany County, 250 ft (76 m)
downstream from bridge, 1.2 m;
(1.9 km) south of Knox, and 1.7
mi (2.7 km) upstream from mouth. | 6.91 | 1903-64,
1906,
1907-74,
1976-77,
1979 | 1- 2-79 | \$.45 | 6ú8 | | 01354200 | Sandsea Kill at
Pattersonville, NY | Lat 42°53'20", long 74°04'42",
Schenectady County, at bridge
on State Highway 55, in village
of Pattersonville. | 9.56 | 1961,
1963-67,
1971-74,
1976-79 | 3- 5-79 | 4,44 | - | | 01354300 | Plotter Kill at
Rynex Corners, NY | Lat 42°49'16", long 74°04'20",
Schenectady County, at bridge
on State Highway 159, in hamlet
of Rynex Corners. | 3.70 | 1958,
1960-68,
1970-74,
1976-79 | 3- 6-79 | \$.05 | • | | 01355405 | Indian Kill near
Glenville Center,
NY | Lat 42°53'40", long 73°57'27",
Schenectady County, 1.1 mi
(1.7 km) east of Glenville
Center, and 1.3 mi (2.1 km)
west of East Glenville. | 2.39 | 1974-79 | 3- 6-79 | 16.32 | 59 | | 01361200 | Claverack Creek
near Claverack,
NY | Lat 42°12'54", long 73°43'40",
Columbia County, on right
bank, 70 ft (21 m) upstream
from bridge on State Highway
9H, 0.5 mi (0.9 km) south of
Claverack. | 60.6 | 1960-681,
1969-73
1975-79 | 1- 2-79 | 8.03 | 2,710 | | 01361453 | Catskill Creek
trabutary at
Franklinton, NY | Lat 42°31'35", long 74°18'33",
Schoharie County, at culvert
on town road, 0.15 mi (0.3 km)
upstream from mouth, and 0.5 mi
(0.8 km) northwest of Franklinton | | 1968-72,
1974-79 | 3-24-79 | 6.96 | 263 | | 01361900 | Shingle Kill at
Cairo, NY | Lat 42°18'32", long 74°00'15",
Greene County, at bridge on
town road at Cairo, southeast
of State Highway 32, about 400 ft
(122 m) south of State Highway 23
and 0.8 mi (1.3 km) upstream from
mouth. | 13.9 | 1953,
1966,
1967-74,
1976-79 | y- 6-79 | \$.30 | ٠ | | 01362100 | Roeliff Jansen Kill
near Hillsdale, NY | Lat 42°09'13", long 73°31'14",
Columbia County, at bridge
on county highway off State
Highway 22, 1.8 mi (2.9 km)
south of Hillsdale. | 27.\$ | 1958-601,
1963-64,
1968-79 | 3- 5-79 | 6.16 | 1,380 | | 01562197 | Bushnellsville Creck
at Shandaken, NY | tat 42°07'25", long 74°24'04",
Ulster County, along State
Highway 42, 0.4 mt (0.6 km)
upstream from Esopus Creek,
and 0.6 mt (0.97 km) northwest
of Shandaken. | 11.4 | 1951.
1956.
1972.
1976-79 | 3. 5.*9 | 8.40 | ٠ | | 01363388 | Dry Brook at
West Shokan, NY | Lat 41°58'22", long 74°17'50",
Ulster County, at bridge on
rown road, 0.6 mi (1.0 km)
northwest of West Shokan,
and 1.2 mi (1.9 km) upstream
from mouth. | 1.67 | 1978-79 | 9- 6-79 | 4.28 | 225 | t Op rated as a continuous-record gaging station. Table 2. - - (Continued) | | Station | Station name | Latitude | atitude Longitude | Co. Code 1/ | Drainage
area
(mi ²) | Date | Discharge 2/
(ft 1/s) | |------|---------------|---|--|-------------------|-------------|--|-----------|--------------------------| | | | | | | | | | | | | 01359917 | Silver Creek tributary at Dormansville | 42 29 01 | 73 59 37 | 100 | 09. | -19-7 | Ξ. | | | | | | | | | 9-25-7 | * .10 | | | | | | | | | . 3.7 | ٥. | | | | | | | | | , c | ۰. | | | | | | | | | ,,,,,, | ٠. | | | | | 17 10 11 | 77 61 03 | 010 | | 1.7 - | 4 | | | | 1) inall kaa | , |)

 | 2 | | 0.07- | ∹ የ | | | | 4 | | | | | 0,01- | ٦. | | | | biones take outlet near climax | 65 07 74 | /0 15 5/ | 059 | | 0-20-63 | 77. | | | | 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 | ני | | | | 0-01- | 7 | | | | Reservoir outlet at | c 17 7 | 51 15 67 | 650 | | 9-97- | ٠, ۱ | | | | | | | | | 0-01- | 7. | | | | civori outiet near nest | - | 71 60 17 | ~ | | 7 7 6 | • | | | | LOASALALE | | 7 00 0 | 200 | | 0.07- | 7. | | | | | , | • | | | 0-01- | 7. | | | | CONSACRIE CIECK AL MEST CONSACRIE | C+ 17 7+ | 0 7 6 7 6 | 650 | | 0-07- | ?` | | | | | , | | c | | 0-01- | ۰. | | | | Nassau | 70 70 70 70 70 70 70 70 70 70 70 70 70 7 |
 | 0 0 | 11.0 | 8-20-6 | | | | | biook at East Adssau | 42 30 13 | 72 63 67 | 000 | 0 6 | 0 - 57 - | ۰, | | 7 | | בבצ או פובלחבתו | 7 70 7 | C 17 C | 0 | | 6 - T 7 - | ٠- | | 4 | | | | | | | - 26.4 | | | | | Black Biver near Cherry Plain. | 42 37 20 | 73 24 39 | 0.8.3 | | 7-11-3 | | | | | | |)
• | • | | -11-3 | F. 6 | | | | hrook at | 2 30 4 | 29 5 | 083 | . 93 | - 24 - 6 | | | | | at Valatie | 12 24 41 | 73 39 30 | 021 | 59 | 2-10-5 | .91 | | | | | | | | | -12-5 | | | | | | | | | | .15.5 | | | | | | | | | | - 11 - 5 | 3.73 | | | 01 24.0 25.0 | 2007 24 12 124 24 | , ,, | 7 41 7 | 1,00 | | | <u>.</u> ; | | | 0000000 | | 57 57 74 | 90 72 27 | 170 | | 1-87. | 651 | | | | 1 mm m | 1 7 | ה
ה | 1 | | - 23.6 | , to | | | | Sand P. t. Brook at Philpont. | 42 14 02 | 73 37 59 | 1,00 | | 24.6 | | | | | | • | , | • | | -23-6 | | | | | ► Agawanack Greek at Philmont | 42 14 01 | 73 37 51 | 0.2.1 | | -24-6 | 9 | | | | | | | | | -23.6 | ∞ | | | 01561610 | Spring at gravel pit) at Philmont | 42 13 42 | 73 38 01 | 021 | | - 24-6 | ^ | | | | | | | | | -23.6 | 4.61 | | | | , | | | | | 28-0 | _ | | | | Agasaman treek near Philmont | 12 15 00 | 73 36 32 | 623 | | 6-24-63 | 10 v | | | | - | | | , | | 0.67- | 0.1. | | | | Agawamuck Creek at Philmont | 70 51 74 | 75 58 19 | 170 | | 0-87- | S - C - C | | | 01361060 | | 17 16 10 | 12 05 57 | 1.00 | | 2.4.6 | 7 0 | | | | 3 | | , | 170 | | -23-6 | *2.67 | | | | | | | | | - 28 - 6 | 6 | |)/ C | ounty code is | S | | | | | 2-6 | ٣. | | 1/ # | - base flow; | a - estimate; T - trace | | | | | | | | ı | | | | | | | | | | | 001361100 | North Creek at Mellenville | 42 15 1 | 2 7 | 3 39 | 9 9 | 021 | | 24-
23-
28- | 9000 | |--------------|---|---|--------------------|------------|----------------------------------|------|------------|------|--|---------------------------------------| | 1 | 01361102 | Claverack Creek at Mellenville | 42 15 1
42 13 1 | 0 7 3 7 | 3 39
3 44 | 56 | 021
021 | 1.03 | 9- 2-64
6-28-65
6-11-75
6-29-60 | * * * * * * * * * * * * * * * * * * * | | | 01361200 | Creek at | 42 12 5 | 7 | 3 43 | 9 | 021 | 9.09 | ÷ ÷ ÷ | *14.2 | | | 01361266 | Taghkanic Creek tributary at Taghkanic | 42 08 2 | 7 3 | 3 40 | 7 | 021 | | .11.
.7.
.25. | C. * * | | | 01361273 | Taghkanic Creek at East Taghkanic | 42 07 5 | 2 | 3 39 | 27 | 021 | | 484 | *,10
.96
.1,99 | | | 01361275 | Chrysler Pond outlet near New Forge | 42 06 4 | 3 7 | 3 38 | 47 | 021 | | 82 | ~ ⊢ * | | | 01361276 | Taghkanic Creek tributary no. 2 near
East Taghkanic | 12 07 2 | 0 ' | 3 40 | 58 | 0.21 | | 25-7 | . = = | | | 01361320 | Claverack Creek at Hudson | 42 15 1 | 7 7 | 3.45 | 11 | 021 | 164 | 18-5 | 17.3 | | | 01361340 | Claverack Creek at Stockport | 42 18 4 | 7 | 3.44 | 34 | 021 | | 6 - | | | 75 | 01361385 | Creek tributary near Athens | 2 18 | r | m 4 | 0 | 039 | | 12-6 | 1 * | | 5 | 01361570 | Creek at Oak Hill | 42 24 2 | | 4.0 | 80. | 039 | 35.3 | -13.5 | ~ ~ | | | 00619810 | | 01 | , | , | - | n
n | ; | 21-6 | * 2.17 | | | 01362003 | Bell Brook at South Cairo | 42 16 0 | 3 7 | 3 5 | 7 40 | 039 | 1.23 | 8-26-74
S-16-72
8-8-72 | | | | | | | | | | | | 12-7 | 2.2 | | | | | | | | | | | - 20-7
- 16-7
- 7-7 | 70.7 | | | 01362015 | Grapeville Creek at Earlton | 42 21 2
42 11 4 | 7 9 | W 44 | 4 33 | 039 | 12.5 | 7-19-5
6-26-6 | *
0.80
8.80
8.80 | | | | | | | | | | | . 6-6 | ₹ 0 | | | 01362050 | Spruce Creek near Haines FallsKaaterskill Creek at Palcnville | 42 12 3
42 10 2 | ထ က | 74 07 74 01 01 01 01 01 01 01 01 | 3 46 | 039 | .53 | -26-6 | 4.00 | | | 01362156 | l near Copake | 2 04 | 7 | 3 | ~ | 021 | | -12-6 | 4.41 | | | | | | | | | | | - 16-6
- 16-6 | . 53 | | | | | | | | | | | -27-6 | . 0 | | 1/ C
2/ * | 1/ County code is listed on $\frac{7}{4}$, 4 - base flow; a - estima | listed on page 51
a – estimate; T – trace | | | | | | | -13-7 | * * *
1.00
8.11 | | | | | | | | | | | | | DRAINAGE AREA MAP - SUMMIT STREET DAM NY-847 APPRESS HIVER HASTIN CCLUMBIA CLUNTY SAYDER LH HITH SURBASINS C O O O 5.5 CHARDEL ROUTING DE HYDROGRAPH TO STATICA 165.5 - AGANARUCK CREEK 325 0.05 595 1,0 J. L 05.0 13700 0,006 273 SECRET STREET DAM DEC 2264-1074 LM -- AGAWAHUCK CREEK VILLIGE OF PHILMONT 0.25 0 600 134 134 INFLUM HYDROGRAPH -- SUBBASIN 1 INFLUM HYDROGRAPH -- SUBBASIN 2 HYDRUGRAPH -- SUBPASINS 1 AND 2 21,16 21.16 0 0.24 125 125 216 270 62.3 115 402 3.99 102 6,62 102 0,22 40.0 2 2 366,5 0.21 ASN-1 851.-2 0.26 12 6.56 <u>...</u> 7.54 ĭ 7 PICCER -4.87 501 001 5.16 0.04 0.20 * Z 200 ₩. × ۳ ۷ ۲ 5 عز 速 = I ٩ × × 23 2 7 5 * 2 c 13 0 7 23 12 77 54 52 12 20 P.2 7 **21** y 63. | 162 115 BRDGRAPH CHANNEL BAREL RNUTING OF HY CO. 04 495 200 502 400 502 400 502 102 115 122 115 DRDGRAPH CHALNEL UTED DUTFLOW FAP 237 413 | 3.8 | ₹ . | - | 1 | # F. C. C. F. | : | 21.16 | | | | - | |
--|----------|------------|------|---------|---|---------|----------|----------|----------|----------|----------|------| | 1, 10, 10, 10, 11, 12, 13, 13, 14, 14, 15, 15, 13, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15 | | | | ' ; | | : | | Š | | | | | | 1.0 6.65 2.109.56 3.1 | 4 | • | | 37 | 162 | 411 | 172 | 134 | | | | | | 1 | 35 | - | | | • | | | | 1.0 | C.C3 | | | | 1 1 1 1 1 1 1 1 1 1 | 30 | ž | 5,14 | 9.56 | | | | | | | | | | HYDROGRAPH CHARNEL ROUTED HYDROGRAPHS 1-2 PLUS SLEASIN 3 1 LENCKK 1 LENCKK 1 1 1 1 1 1 1 1 1 | 3.7 | * | • | 18 | m | | | | | | | | | HYDROGRAPH CHARNEL ROUTING OF HYDROGRAPHS 1-2 PLUS SUBRASIN 3 1 1 1 1 1 1 1 1 1 | 3.8 | × | ~ | 169,5 | | | | | - | | | | | 1 CPANTEL ROUTING OF HYDROGRAPH TO STATICN 23 AT RESERVOIR 1 1 1 1 1 1 1 1 1 | 39 | 72 | | HAD | ROGRAPH | CHANNE | L ROUTED | HYDROGR | APPS 1-2 | | PRASIN 3 | | | 71 | 0,4 | | - | LOWCRK | | | | | | | | | | γ 1 1 γ 0.04 0.04 495 512 1450 0.00682 γ 16C 512 200 502 270 500 273 4γ5 325 γ 34C 500 400 502 420 512 1 γ 34C 500 400 502 420 512 1 κ1 1 bit 1 bit 1 bit 1 1 1 1 1 κ1 1 bit 2 | 1, | 1 9 | | CHAI | KREL ROUTS | NG LIFE | YDKOGRAP | H TO STA | TICN 23 | AT RESE | 4VUIR | | | γ1 γ γ2 γ3 512 14450 0,00682 γ3 495 312 14450 0,00682 γ7 1 bc 200 502 270 502 273 495 325 γ7 350 400 502 420 512 1 κ1 1 1 5,26 21.16 1 1 1 κ1 1 3,26 21.16 134 1.6 0.065 1 | 45 | * | | | | | ~ | | | | | | | γς 0.0% 0.04 495 512 14550 0.00682 γγ 19C 502 270 500 273 495 325 γγ 13C 400 502 420 512 1 κ 1 10C 400 502 420 512 1 κ 1 1 5.26 21.16 134 1 1 κ 1 1 5.26 21.16 134 1 1 1 γ 2 102 115 128 134 1 1 1 1 γ 6 0.06 102 115 128 134 1 | 43 | 7 | ·L | | | | | | | | | | | Y 1 of | 1 | 4.6 | 0,04 | | 0.04 | 495 | 512 | 14450 0 | .00682 | | | | | Y | 45 | 47 | 180 | 512 | 200 | 505 | 270 | 200 | 275 | 475 | 325 | 495 | | 1 1 1 1 1 1 1 1 1 1 | 40 | L Y | 365 | 000 | 400 | 505 | 420 | 515 | | | | | | N | 4.7 | • | Ų | 4-45E | | | | | | | | | | H | 8 7 | K 1 | | .u. | LUW HYDROG | RAPH | | | | | | | | T 1.0 U.O5 X 5 15 3 K1 HYDRUGRAPH CHALIEL ROUTED HYDROGRAPPS 1-2-3 PLLS SUBBASIN 4 K1 ROTED DUTFLOW - FAP - SPILLCREST ELEV 495 LSGS - NO SIPPLOG 0 Y 1 1 1 | 5.4 | Σ | ~ | ` ~ | 5,26 | • | 21,16 | | | | | | | T 4,66 0,26 X 5 15 3 h 7 23 k) HYDRDGRAPH CHALMEL RGUTED HYDRDGRAPFS 1-2-3 PLLS SUBBASIN 4 k 1 DAP k1 | 56 | э. | | 20 | 102 | 115 | 125 | 134 | | | • | | | 1 4.66 0.56 X 5 15 3 h 23 h 23 h 1 DAP h 1 DAP h 1 DAP h 1 REUTED DUTFLOW - CAP - SPILLCREST ELEV 495 LSGS - NO STOPLOG 0 y 1 1 1 h 4.95 495.7 496 497 498 499 500 500.25 h 25 170 264 5 57 570.45 | 51 | - | | | | | | | 1.0 | 60.0 | | | | N | 55 | 77 | 10.4 | 0.56 | | | | | | | | | | H HYDRDGRAPH CHALMEL RGUTED HYDRDGRAPHS 1-2-3 PLLS SUBBASIN 4 H HYDRDGRAPH CHALMEL RGUTED HYDRDGRAPHS 1-2-3 PLLS SUBBASIN 4 H I DAM H RCUTED DUTFLOW CAP SPILLCREST ELEV 495 LSGS NG STOPLOG Q Y H I I 495,5 495,7 496 497 498 499 50G 500,25 H I I 126 237 413 1195 2244 3527 5034 5413 6 S 57 570,45 | 53 | × | ur. | 15 | w | | | | | | | | | HYDRDGRAPH CHALNEL RGUTED HYDRDGRAPHS 1-2-3 PLLS SUBBASIN 4 R 1 DAP N1 RCUTED DUTFLOW - CAP - SPILLCREST ELEV 495 LSGS - NO SIOPLOG 9 Y Y Y 1 1 495 -1 | 54 | 2 | ^ | 23 | | | | | | | | | | N | 55 | , x | | НУВ | RDGRAPH | CHALME | L ROUTED | HYDROGR | APFS 1-2 | 1-3 PLLS | SUBBASIN | 4 | | N 1 1 1 | 20 | × | 7 | DAM | | | | | - | | | | | 7 1 1 | 57 | 7 | | RCU | TED DUTFLO | W = CAP | | CREST EL | 1 667 13 | | STOPLOG | • | | 71 1
14 40° 495,7 496 497 498 499 500 500.25
17 7 120 237 413 1195 2244 3527 5030 5413 6
15 170 204 | 56 | > | | | | | - | | | | | | | 14 49° 495,5 495,7 496 497 498 499 500 500,25
17 120 237 413 1195 2244 3527 5030 5413 6
25 17° 204 | 88 | 14 | | | | | | | 1493 | 7 | | | | (5 f 120 237 413 1195 2244 3527 5030 5413 55 170 204 505 5413 505 505 505 505 505 505 505 505 505 50 | 09 | 42 | 46,3 | 445,5 | 495.7 | 964 | 497 | 867 | 564 | 200 | 500.25 | 109 | | 55 179 | 14 | # <u>`</u> | ι. | 120 | 237 | 413 | 1195 | 5544 | 3527 | 7624 | 5413 | 6613 | | 300 | 62 | ٠
• | 179 | 504 | | | | | | | | | | | 63 | .3 | 5.7 | 34.0.45 | | | | | | | | | WAR WIE OF SEQUENCE OF STREAM NETWORK CALCLATIONS RUNNIFF HYDRICRAPH AT 85N-2 CLUMBINE 2 EVDRUCRAPHS AT 306.5 RUNNIFF HYDRICRAPH TO MIDCRE RUNNIFF HYDRICRAPH AT 85N-3 COMBINE 2 HYDRICRAPHS AT 165.5 RUNNIFF HYDRICRAPH AT 85N-4 COMBINE 2 TO DAM RUNDF HYDRICRAPH TO DAM | 9 10 10 10 10 10 10 10 10 10 10 10 10 10 | (1-) (1) | 1.1 1.7 | | 51 13 | |--|------------|-------------------|------------------------------|------------------------------------| | * | 1.040. | 7 | - | SK OF THE FOR FOLLYNOWS IN 1979 25 | | · · · · · · · · · · · · · · · · · · · | GGE AFT | 112437 | IFICAT! | FUR FIL | | と かいそいしょう こうこうこういかのかきかのかかなかななななななななな | 4740 GUDT: | CAN SAFETY SERSTI | LAST PUBLICATI N. NO NEW ST. | 21 U1F1F1 | 1.EN YGK STAJE LEPT OF 47 VINCOMENTAL CENSERVATION FLEIC FROTECTION BURFAL ***** JPRT INAME ISTAGE TAUTO (17) ANY CALCHARPY 22 IND-EF-PFRIND UNDIMATES, LAGS 4.5C HCLRS, CPs C.56 VIL. 1.00 (1. 174, 251, 295, 247, 247, 170, 170, 170, 26, 38, 37, 26, 36, 37, 26, 5, 4, 5, 6, 5, 4, RTIPP LCHER HUDSCh KIVER BASIN CCLLKBIA COLUTY SNYCEK UF VITH SUBBASIPS LOCAL r.STAN 0 RECESSION DATA STETU# 4.U0 QRCSN# 12.00 RTICR# 3.CU ULVEH SHYDER CP ARD TP ARE TC# 5.46 ARC R# 5.3b 177ERVALS 15AI.E 1981 CNSTL 0,05 1.00 ******* ISNCH 872 C. 1PLT 0 C. 5C RTIOL ERAIN STAKS RTIOK STRTL 1.00 C. 0. MULTI-PLAN ANALYSES TO BE PERFCAPED hPLAN* 1 NRTIO* 8 LRTIO* 1 0.21 C.22 C.23 0.24 0.25 C. UNIT HYBRUGRAPH DATA TP# 4.97 CP#0.36 NTA# C PAT IC SPFE PMS - P6 P12 R24 R48 C P02.00 115.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 135.00
135.00 13 TRACE SUB-AKFA KUNJFF CCMPUTATION 19L7 SUC IT STREET CAN UNC 229A-1074 LN -- AGAMANOK GREEK VILLAGE OF PHILAUMT * ******* JUB SPECIFICATION IN N HYCEOGRAPH CATA TRSDA TRSPC 21.16 C. LROPT INFLUE HYDROGRAPH -- SUBBASIN I 15TAG ICUMP IECON ITAPE 65N-1 0 0 0 0 E O SNAP 0. PADO O O O O O S 经存储的证券的证券 TLREA 3.99 LA.PT STOKE DLIKE C C. C. 0,20 APPRINTATE CLASS CIESTICITY SALL 10HG 1 î " K1158 1 4-40 C 1575 RUG CATE OI/16/EL ٠ • ١ 1 • • • • ø • 1754. 1564. 1254. EXCS 0. F10-0F-PERIOD FLUL COLP 2 HU, DA PR.PA PERICE 4, 1,03 3,CC 51 3, 1,03 4,CC 52 L055 0,01 0,01 1.4CS | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | |--|--| | | 20 N | | | 7. a | | | 22 NO MOSTA | | | SC S | | | 7000 - 24
74 7 - 10 4 4 4 4 | | | 1952.
18.20
18.20
18.20
472.
472. | | デジャーのハビジュのログトの人のできなってでかりをからいでをして「「「「「「「」」」というとをアウックののしょをじゅというようらいらかと ヨゴルちでいかい ディベリケーをからり みちをすし | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 40 m ? | | | a.in.⊸ d | | | 4 Tw | | _ | b- | | |) n
) o | | ്ടുക്ക് ത്രാമ്മ്മ്മ്മ്മ്മ്മ്മ്മ്മ്മ്മ്മ് വ്വാശ്യമ്മത്ത് വ്യാഗ്ര് ത്ര്വ് വ്യാഗ്ര് വ്യാഗ്ര് വ്യാഗ്ര് | | | | | O | " →00 | | 4 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | 4 4 4 4 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | |-----------------|---|--|---|--|---|--| | N=00 | | 80 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 12.
12.
13.
13.
13.
13.
13. | | 0.
12.
17.
230.
576.
94. | | 24 c 0 | 10130
10130
10130
3.94
99.95
837
1033 | 12443
12443
12443
1443
1443
1443
1443
14 | VCLURE
10637.
361.
4.13
104.55
879.
1064. | 100
100
100
100 | 11143.
11143.
316.
4.33
105.34
1136. | 1 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | # ~ ° ° | TCTAL | 7110 2
C. 3.
11.
106.
736.
125.
2. | TCTAL | 7110 3
12.0
12.1
12.1
13.1
13.1
10.0
10.0 | TCTAL | 7116 4
20
120
120
1160
8060 | | 22.
2.
1. | 72-HCLR
141.
4.
3.53
99.50
637.
1032. | PLAN 12 R. 16 1 | 72-HCLP
146.
4.13
104.89
1083. | PLAN 15 R. 10 P. 1 | 72_HCLR
155,
4,33
109,89
92C,
1135, | PLAN 19 R1
0.
1.
11:
94:
932: | | 25.
2.
0. | 24-HRLR
390.
11.
92.47
774. | 8584-1 FGR
0.
11.
10.
162.
28.
28.
1. | 24~HDLR
410.
12.
97.82
97.10
813. | BSN-1 FER
12.
12.
12.
190.
2.
1. | 24-HOLR
429.
12.
4.00
101.72
852.
1051. | 1. 15. 1. 15. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | %%
%
0 | 2.20
1.85
2.85
2.62
2.62
2.63
2.63 | V | 6-117.08
2.4.09.1
41.4.09.10.10.10.10.10.10.10.10.10.10.10.10.10. | A | 6-HTUR
474.
25.
2.04.
51.75
434. | H AT STA
1.00.
14.
14.
59.
14. | | | PFAK
906.
26. | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | PEAK
951.
27. | HYORGERAPH
11. 56. 12. 66. 22. 66. 22. 66. 66. 66. 66. 66. 6 | PEAK
997.
28. | JAHGRAP. | | 5 N M D | | 7 P P P P P P P P P P P P P P P P P P P | | 140
2001
2001
2001
2001
100 | | | | | 45
850
870
14-24
11-24
11-34 | | CFS
CAS
TF C (ES
TY AC + FT
AC + FT
T+ D(S) CU H | | CFS
C,55
ITC+ES
AC+F1 | | | ; c | | | | 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | | Mining and display | | 11/11/20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0. 7. 139. 1564. 240. 240. 240. 119. 98. 14. 12. 12. 12. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15 | VCLLME
12156.
244.
4.72
119.93
1105. | 0.
5. 13.
15. 15.
171. 250.
743. 628.
124. 105.
120. 15. | VCLLME
1263,
359,
4,92
124,94
1247,
1251, | 15. 27.
21. 27. | |--|---|---
--|---|---| | C.
TCTAL | 2 | TCTAL VC
12
11
1 | 11 C 6 12 | TCTAL VC
12
12
1 | 10 7 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 72-HCLR
162.
4.52.
114.38 | PLAN 12 R1
12,
12,
12,
972,
172,
26,
20, | 72-HCCR
169.
169.
119.48 | PLAN 1. R
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 72-hCLP
176,
4,52
124,67
1046, | PLAN 19 F
1-
1-
2-2-2-5-
2-2-2-5-
3-3-5- | | 24-HULR
445.
13.
106.19
105.39 | PSV-1 FER
13.
13.
1073.
209.
20.
32.
20. | 24-HDUR
468-
13-
13-
110-97
1146- | BSN-1 FCR
13.
13.
83.
1113.
216.
23. | 24-HDCR
488.
14.
115.59
115.59
968. | PS:4-1 FGR | | | 10. 11. 11. 11. 11. 11. 11. 11. 11. 11. | 6-120 CR 2 | APH AT STA
10.
16.
16.
1133.
260.
40.
3. | 20.32
20.32
23.32
58.61
59.61 | APH AT STA
10
21
21
124
2255
521 | | PEAK
1042.
30. | HYPANGRAPH 10. 10. 10. 20. 20. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1 | PFAK
1087.
31. | HYDROGRAP
10.
10.
10.
10.
11.
11.
24.
45.
20. | PFAK
1133.
32. | 1. YDKOGRAPH 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | | | ACT & ACT | 24.0
20.0
24.0
27.0
24.0
30.0
14.0
30.0
14.0
30.0
40.0
40.0
40.0
40.0
40.0
40.0
4 | | 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | | | 16.74.74 | | | • | | 42
42
44
44
44
44
44
44
44
44
44
44
44
4 | | | | | | N W W W W W W W W W W W W W W W W W W W | |--|---|---|--|-----------------------------|--|--|---| | | 2002
2002
2004
2004
510
50
100
100
100
100
100
100
100
100 | | *** | IAUTG | OC AL | 7 | 26.7.
26.7.
4.5. | | | | ш • • ю т • • | • | ISTAGE
0 | SAME LUC
1
F96 | 4 L SMX | 18.TERVALS
= C.57 VCL:
3.19. | | 23.20.
23.20.
24.50.
24.60.
25.60. | 932 | AL VELLME
1434.
19.66.
19.66.
499.91
4100. | * * * | 1 NAME | # 0 | CN57L
0.C3 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | C - 789. | 7 1 4 2 5 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | *** | 1891
1891 | 1 4° | 3187L
1.00 | AYICK* 3
AND R* 5
.15 FCLRS.
04. | | 351
9 10
249 8
2051
2051
2551
2561 | PLAN 18 20 20 20 20 20 20 20 20 20 20 20 20 20 | 72-HCLR
703-
19-67
499-45
4183-
5159- | ***
COMPUTATION | JPLT | SPC RAT
• 0.
24 R4:
00 134.01 | 4710K
1,00 | TA
3.00
C= 5.89
AG= 5.
425. | | 976.
9.10
231.19
1936.
2368. | 85.4-1
8 | 24-HDCR
1952.
18.20
462.37
3872. | ************************************** | SBASIN 2
TAPE | TRSDA TRSS
TRSDA TRSS
21.15 G.
21.19 G.
PRECIP DATA
P12 R2. | LDSS DATA
STRKS of 3.
HYGRGGRAPH | CCESSION DA
GRCSr# 1
OD TP ARE T
2DIMATES, L
410,
92,
15, | | 117.62
4.03
117.62
9:5. | AT STA
11.
12.
50.
00.
00. | 01410R
3713
112.
12.
13.
12.
12.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13 | AREA | APH SUBBA | SHAP TR
0. 21
0. 81
86 P
2.00 115. | EPAIN
0.
UNIT | ER CP AT ER 100 UR | | 2265. | 10000000000000000000000000000000000000 | PFAK
4530.
128. | | TAN ICOMP | TAREA
6.02
6.02
PMS
20.00 10 | 1.10
0.10 | STOTQE
GIVEM SN
3 EMD-OF
20. | | 1 - 3 °
2 - 3 °
3 - 3 °
3 - 3 ° | 44 | CFS
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | * | Takeen HY
15TAQ
USN#2 | 10.0
10.0
50.6
50.6
50.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0 | ¥
= : | | | Ē | | 74
15 | ** | | THY DC BY SOCKER | 5 STPF C. | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | ************************************** | | > | י, | (1,434) (5)
(3) (4)
(4) (4) (4) | | | | | | | TRSPC CLAPUTED | | APPROXIMATE (LANG) 3 | | | | | | | TRSP | | 44 | € n 1 1 2 • | _ 3 11 5 | | |--|---| | | | | | | | 5 1 (| 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° | | • 0 | | | | | | 12 0 | 5 0,12 0,00 | | • | • | | 10 0.10 0.40 0.40 0.40 0.40 0.40 0.40 0. | | | 1112 0. | 7 6.17 4.12 0. | | 0 80.1 | 0 80 1 193 | | | | | .1 | | | • • • • • • • • • • • • • • • • • • • | 0 0 0 0 | | | | | 11 : 00 | v 6,11 c,06 0. | | 11. 6.30 0. | 0 0,11. 0,00 0. | | 11 | | | 11 1.06 0. | 9 9,11 1,06 6 | | 11 | 0,11 ,,06 0, | | 30 . 1.31 . 0.4 | 7 0, 30 7, 31 . 0. | | υ . 18 | 0 18 0 00 0 0 | | 33 0.00 | 0 16. 0 00.0 | | 11 11 0. | 0 6.10 0.31 0. | | od 1,63 0, | 7 1,04 1,63 0, | | 22 2.47 0. | 2,52 2,47 0. | | 39 6.34 0. | 3 6,39 6,34 0. | | 30 2,31 6, | 1 2,30 2,31 0, | | 69 [1.8] O. | 3 0.17 5.11 0. | | 10 0,11 0, | • 0 11 0 | | 12 C.11 0. | 5 0.13 C.11 0. | | 13 0.11 0.11 0.11 0.11 0.11 | 2 0.13 0.11 0.
2 0.14 0.11 0. | | 10 0.11 0. | | | 300
300 | *************************************** | | | | | ن <u>د</u>
ط | PEAK | | 197. | 197. | | | | O | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 22.
22.
22.
22.
20. | ů | |---|---|--|--|---|---| | 14010
14010
14010
12010
10010 | | 0.
15.
223.
2293.
891.
147.
24.
10. | | 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ÷ | | 1620 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 10000
10000
10000
10000
10000
10000
10000 | 200
200
200
200
200 | VCLL'E
16641.
454.
104.03
104.03
1880.
1880. | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | VCLLC
10 470.
470.
10 9.03
10 10.
10 10. | | 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | TCTAL | 11 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 | TCTAL | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | * TCTAL ** | | 11 15 40 40 40 40 40 40 40 40 40 40 40 40 40 | 72-HCLR
216.
3.93.
99.65
11262.
1556. | PLAN 1. P. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 72-HCLR
223.
4.13.
104.84.
1325. | PLAN 12 11 12 12 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | 72-HCR
293-6
109-6-4
13-R
1712-1 | | 4000342
4000342
4000342 | 24-HTLR
566.
17.
92.61
1162.
1434. | S.1-2 FCR
000000000000000000000000000000000000 | 24-HULR
615-
13-
3-40
96-61
1221-
1505- | 85.4-2 FCR
10.00
10.00
10.00
10.00
10.00
10.00 | 24-HDCR
645-
18-
101-21
101-21
1275-
1577-
1577- | | 29.
71.
71.
72.
34.2.
34.2.
57.
1. | 6-HFUR
1154.
33.
1.31
45.45
579. | 11 STA
55
56
11 | 6-HPUR
1227.
35.
1.95
46.15
608.
750. | AT STA
11.
10.
10.
10.
11.
11. | 1285.8
1285.8
1.99
50.45
637.
756. | | - | PEAK
1320.
37. | 0 K O G P A | 1386.
39. | 7 1 1 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | PFAK
1452.
41.
41.
1.00008APH
| | | | 1 0 2 0 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 | 11 C+15
C+5
11 C+15
12 - 24
E+17 | 72.77 | 653
27.53
27.53
27.53
27.53
27.53
27.53 | | | 1. J. | | T | | ÷ ; | | NAAN AA | | | | 725.
725.
725.
101. | .≟ , | ' ' | 2000
2000
2000
2000 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | W W W W W W W W W W W W W W W W W W W | <u>-</u> | | |--|--|--|---|---|--|-------------| | 161.
261.
26.
10. | | 11.
226.
935.
168.
27.
20. | | 23.27.
24.59.
1.459.
1.459.
1.20. | | | | 200
200
200
200
200
200
200
200
200
200 | 457.
457.
457.
4.52.
114.03
1452.
1751. | 1000
1000
1000
1000
1000
1000
1000
100 | 1833.
1933.
412.
119.02
119.02
119.02 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 19657
19657
541.
6.32
124.92
1977 | : · · | | 1245.
23C.
38.
3. | TCTAL | 11 11 12 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | TCTAL | L 400404 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | , , , , , , , , , , , , , , , , , , , | • • • • • | | 275.
46.
3.
1. | 72-HCLR
244.
7-72
114.83
11451.
1789. | PLAN 1. PLAN 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | 72-HCLR
254.
7.
4.72
119.82
1514. | PLAN 16 R
1 10 11 10 11 10 10 10 10 10 10 10 10 10 | 72-HCLR
265.
4.51
124.61
1577.
1945. | • | | | 24-HPUR
674-
15-
4-17
105-81
1337-
1649- | S.4-2 FCR
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | 24-HOUR
703.
20.
4.35
110.41
1395. | BS'1-2 FGR
21.
117.
117.
1649.
53. | -HOUR
733.
21.
4.53.
15.01
1453.
1792. | | | 20 | 6-1170R
1344.
38.
2.05
52.74
550. | APH AT STA B 10. 23. 144. 1557. 15 410. 16. | 6-11CUR
1462.
402.
2,17
55.04
695.
d58. | H AT STA
1.
224.
222.
1. | 6-HFUR
1461.
41.
5.26
57.33
724.
093. | • • • • • | | 19
405.
75.
75.
10.
60. | PFAK
1518.
43. | HYDRDGRAPH
1.
2.
2.
6.
6.
3.9.
4.9.
6.
6.
1.
5.
6.
1.
1. | 200 A | F fDR fight a function of the | PEAK
1649•
47•
173060 AP | • • • • | | 74 | 2.5
2.5
2.5
3.0
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7 | 11.
27.
47.
11.07.
13.
12. | CFS
CNS
CNS
IPCOES
NA
NC-11
NC-11 II I | 41 | 0FS
003
12 0.03
14 + 24
14 + 25 0.8 = 17 | • • • | | | | 200
200
200
201
201
100
100
100
100
100 | | 100 mm m | | • • • • • • | : . | 25.
22.
22.
52.
50. | ng el | 50 00 M
0 10 10 10 40 40 10 10 10 10 10 10 10 10 10 10 10 10 10 | | |---|--
--|---| | 910
161
26.
2 2
1 0 | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 1662 - 1592 - 251 - 251 - 251 - 251 - 251 - 251 - 252 - 252 - 252 - 251 - 251 - 251 | 11.
22.
22.
22.
1115.
20.1.
33.
43.2.
11.
11.
11.
11.
11.
11.
11. | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ••• | | 1245.
245.
386.
10.
11. | RTIC 5
10
173
1299
1299
1299
10
40
40
40
40
40
40
40
40
40
40
40
40
40 | 7 7 1 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | · · · · · · · · · · · · · · · · · · · | | 415.
475.
46.
100.
72-HCLR
72-HCLR
72-HCLR
14.52
114.83 | PLAN 1. RT
18.
18.
189.
199.
476.
19.
72-HCLR
72-HCLR
72-HCLR
72-HCLR
72-HCLR
72-HCLR
1514. | PLAN 12 RTI
19.
145.
145.
1538.
299.
299.
209.
209.
265.
124.ell
1577. | PLAN 1, PT | | 1511.
32.5.
3.
55.
3.
6.
6.
15.
105.81
1337. | 22.2.2.2.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3. | 85:4-2 FGR
117
117
117
1547
1557
257
257
257
115-01
1753 | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | 1.92.
1.93.
65.
1.0.
1.344.
1.344.
2.05.
52.74.
822. | 6 1 STA | 6-HPUR
1461.
1461.
1461.
2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 | 7 | | AGENTAL PEAK | 1. 1. 2. 2. 2. 2. 2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. | HYDROGRAPH 1. | - 70 x 13 c p p p | | CFS CFS CFS AC-FT TFULS CC A | 11.07. 1.3
47. 1.3
47. 1.3
5.31. 6.75
10.04.5. 1.3
10.04.5. 1.3
11.05. 6.1.3 | 11.
51.
11.5.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1.0.
1 | <i>::</i> ::: | | 000 | 2 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | | | | | | | ; • | ***0 | | 2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000 | | | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 | | |---|--|--|--|---------------------------------------|--------------------------------|--|--| | 80 N m | | 100 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | *** | ISTAGE IAUTD O | 25 2 2 2 2 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | 88. | 2615.5
3615.5
1062.
96.03.
26.60.3
24.60.3
3150. | 4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 | VCELT 2 76 360. 2163. 199. 6 4 9 9 6 5 6 5 6 3 1 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 | • | INAME 15 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 25467.
25467.
710.
3.04
99.05
2160. | | * • • • • • • • • • • • • • • • • • • • | TCTAL | 7110
8 10
10
10
10
10
10
10
10 | 16141 | * | 1981
0 | 7115 1 1 2 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | TETAL | | 7. | 72-HFLR
1936,
15,
249,63
3154,
3496, | PLAN L. RT
4. 4. 4. 77. 577. 577. 1196. 11 | 72-HCR
1066.
3G.
19.66
499.25
6308.
7786. | ÷. | o o | PLAN 1
10 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 72-HCLP
359-
369-
399-87
2006- | | | 24-Hnur
1465-
1465-
41-
9-06
230-02
290-0
3594- | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 24-HGLR
2930-
83-
10-11
460-03
5812-
7169- | *********
GE HYDRGGRAPHS | 1 AND 2
ITAPE | AT 306.5
1 0 0
27 2
16 1
22 14 2
45 2 1 | 24-HUULR
246-
246-
26-19
1937- | | : M | 2921.
2921.
4.81.
114.06
1469. | APH AT STA
4. 1.
97.
957.
17.
295.
17. | 0-1100R
5844.
165.
224.03
249.7.
3497. | ##
2018/00 | SURBASIWS 1
MP IECON
2 0 | HYDRGGRAPHS
12.
122.
122.
2204.
250.
550.
69. | 1963.
1963.
56.
1.65.
40.14 | | • • • | РБАК
3299.
93. | יטאמכר | PEAK
6595.
187. | *
*
*
* | 100 | N | PEAK
2214.
63. | | 7 | | 12 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2882 E | ** | 17045633PH
15144
306.5 | 200
100
100
100
100
100
100
100
100
100 | | | | 1 50041 | 20010030
5 00010030
5 00010030 | | . >
- ↓ | | 7 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - | | | | | 11 mg/s
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/200
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000
2000/2000 | | · · · · · · · · · · · · · · · · · · · | | 6.14.0.4.0.0
6.14.0.4.0.0 | | | | | | | | | | | 5 · • •) n 🥹 | 1 L L L L L L L L L L L L L L L L L L L | | # 4 20 0 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 | | 897
897
897
1264
213
213 | |--|--|--|--|---| | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | · | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 | | 0.000
0.000
0.000
0.000
0.000
0.000 | VELLOS
755.
755.
755.
755.
755.
2755.
2755. | | 27944
27944
7514
7514
7514
7514
2514 | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | TCTAL | 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | TETAL | A TIL 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 5 PLAN 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 72-HCLR
370-
10-
104-66
2203-
2717- | PLA1
1. A1
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2 | 72-HCLR
388.
11.
4.33
109.66
2304.
2847. | 5 PLAN 1
227 227 227 4 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | AT 3.06.5 | 24-HDCR
2000-
2000-
2000-
2000-
2004-
2004- | 1 305.
305.
305.
305.
305.
41. | 24-HJUR
1074-
1074-
101-41
20130-
208- | AT 306.5
13 31.85.55.55.55.55.55.55.55.55.55.55.55.55. | | HYDKA75KAPHS A 10 120 120 2314 2314 24 573 1 | 6-HIUR
2061.
58.
1.92.
44.65
1022.
1251. | DKUGFAPHS A 10.00 35.00 135.00 135.00 605.00 135.00 | 6-HTUR
2159-
2101
50-97
1071-
1321- | 2006APHS
2008
2008
2008
2008
1008 | | 5 | PEAK
2324.
66. | 2 44 | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | JF 2 HYD | | ۲ ا
و 2 م
ا 1 ا | C 15
C 15
C 15
C 15
C 15
C 16
C 16
C 16
C 16
C 16
C 16
C 16
C 16 | SLM JF
2
2
41
41
93
2173
724
118
7 | 068
0688
11 0688
11 0688
11 10 8 | 22 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 5
≜ | 21 - C C C C C C C C C C C C C C C C C C | 4 € | | | | | 2. x x x x x x x x x x x x x x x x x x x | | | , . | ###################################### | | 2 M M M M M M M M M M M M M M M M M M M | | 2001
2001
2002
4003
2007 | | |---|---|---|--|---|---| | 10 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 64 64 64 66 64 66 66 66 66 66 66 66 66 6 | | 420 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | ###################################### | 26469
36469
3649
4.72
115.94
2520
3163 | | VCLLME
31759.
159.
4.92
124.94
2625.
3234. | 8 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | VELL"E
64510.
1750.
9.34
9.34
545.99 | | A | TCTAL | 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | TCTAL | 6 4471
5 40400
5 4040000
 | TCTAL | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 72-HCLR
423
12.
4.72
119.84
2518 | PLAN 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 72_HCLR
441.
12.
12.
124.84
2623.
3235. | PLAN 1
9-
63-
63-
63-
101-
11-
11- | 72-HCLR
881.
25.
9.83.
249.67
5245. | | AT 306,5
10,0
19,2,2
26,5,5
5,5
1,5 | 24-HULR
1172-
1372-
4-36
110-63
2324-
2867- | A 6050 | 24-HnLR
1221,
35,
4,54
115,24
2421,
2936, | AT 306.5
4 4 6 1 6 1 6 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1
6 1 6 | 24-HDCR
2441.
65.
230.48
4842. | | HYDA J. FARINS
11.
147.
2644.
2657.
107.
5. | 6-HCUR
2350.
51.
2.14
55.67
1164. | DRGGRAPHS 2. 40. 15. 45. 153. 2633. 111. 2. 2. | 6-47UR
2454.
63.
2.23
57.92
1217. | HYDQCGRAPHS 3. 11. 79. 306. 2509. 1375. 1375. 13. 4. | 6-HFCUs
49'6'
1130.
115.84 | | 2 2 2 HY | 2656.
75. | 11.5 2 HY 2.7 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 | PEAK
2767.
78. | ۲.
د | PFAK
2234.
157; | | | 755
1765
1765
176
176
176
176
176
176
176
176
176
176 | | 200
200
200
200
200
200
200
200
200
200 | 50.1
10.2
10.3
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | | | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ê | | د | 201 | ٠ | | 111 | | 7 | | 22.82.22.82.22.83.22.83.22.83.22.83.22.83.22.83.23.23.23.23.23.23.23.23.23.23.23.23.23 | |) 0 0 i . • | | | | · | | | | | | 1 272,51
9 1604,67 | 7+357-51 | | | |---|---|---|---|------------------|----------------------|----------------------|--------------------|--|-----------------------|------------------|------------------|-----| | 1024
1024
1017
1017
1020
1020
1020
1020
1020
1020 | | *** | 1 AUT 0 | | | | | | 160,51
1533,29 | 3022.Fc | 200 | • . | | 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 127637-
127637-
1957-
1967-
1699-
12950- | | AGANAMICN GREEK
Iname Istage
I | LSTR | STCKA ISPRAT
O. O | | | 0.4.484 | 57,71
12,4,19 | 2002,55 | ** | | | ###################################### | TCTAL | *** | 169.5 - AG
JPRT
C | 9 9 0 | 2 TSK | | | 325,00 | 76.65 | 181C-12 | 7.0.0 | • | | 5.
126.
10202.
1913.
307.
22. | 72-HCLR
1763.
56.
19.66
499.35
10.996. | | ING
TATION
JPLT | | ×
° | | | 295,00 | 60,31
1092,77 | 73 | 9,50
7,53 | | | •••••••••••••••••••••••••••••••••••••• | 24-HOUR
- 136.
18.15
460.96
9684.
11945. | * | HYDRUGRAPH ACUTING
Hydrugraph TG STAT
IECON ITAPE J | | AMSKK
0. | | SEL
C.30650 | TC
D 275,00
O | 8
6 109 | 34537
2 34537 | 96.0
46.0 | • | | | 0-H7UR
98178
278.
9.12
231.68
4867. | * | HYDREGRAPH
F HYDREGRAPH
IECOM IT. | 80U
1865
1 | 00
V | | RLETP
13700, C. | ELEV-E
5 600,00
0 512,00 | 44.44 | 772,98 | 547.68
601.13 | | | 6
153
110
13
13
13
13
13
13
13
13
13
13
13
13
13 | PEAK
11068.
313. | * | OUTING OF
ICOMP | . A V G | NSTOL
0 | | ELMAX
612.0 | STAJELEVISTAJELEVETC
602.00 273.00 600.00
602.00 575.00 412.00 | 29.15
10.42 | 393.42 | 594,79 | | | ###################################### | | ·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
· | CHANNEL R
ISTAB | CL055 | HSTPS | | ELAVT
295.0 | | ر
د
د | í e | vr 4 | • | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0.65
0.05
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1. | _ | C | 550 IT | | 5511 10 a | (#1#)
(*)\(\) | 9686194165
10 76,50
10 530,00 | 14.32 | 1354,33 | | • | | 2000
2000
2000
2000
2000
2000
2000
200 | | #
************************************ | | | | No Television of 450 | 0.16.0 | CALSS SECTION CHEST
25.00 412.00
330.00 55.50 F | 537.1. | 0. 12377. 3 | • • | | | | | | | | | MORMAL DEPTH | (1) (1) | ٠
٢ | ST-3+466 | GuffeLS a | 34476 | i | , , , | 0 | | | | | | |--|-----------------------|--|---|--|--| | 11.
22.
22.
22.
13.72.
250.
46. | 001017 | | | | 24 40 40 40 40 40 40 40 40 40 40 40 40 40 | | 200
200
400
400
400
400
400
400
400
400 | | 44444444444444444444444444444444444444 | 254C8.
254C8.
3.04.
3.04.
50.90.
2100.
2550. | | | | 2 | | | | بر
م | 10000000000000000000000000000000000000 | | 29.
29.
21.21.
419.
61. | 0004000000 | | CC 72-HC
66.
1.43 33.
1.54 996.
6. 2091. | | 2227.
2227.
440.
55. | | 228
1113
228
561
561
597 | N 0 0 4 4 5 4 4 0 0 0 | 59 59 59 59 59 59 59 59 59 59 59 59 59 5 | 24-Hnuls
976
276
12 3-6
12 92-1
1936
1936
1936
1936 | | 121.
234.
525.
101.
7.
577. | | 213.
503.
112.
112. | | 0.4.0.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 | * 1957.
1957.
55.
1957.
1957.
1197. | STATION | 2241.
634.
634.
110.
10. | | | | | PEA 2232 633 633 633 633 633 633 633 633 63 | | 22.
12.40.
72.40.
12.00.
17. | | | | | 116 PESS | 0.00 · 0. | | | | | | | 15 | | | | | | | MAXINU1 STAGE | | | | | , , | • • • | | | | 10 P N U O O | 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 044 WO C MOOO | 0 | |--|---|--|---------------------
---|--|--| | 3NF NO 0 C | 0 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 12.
12.
1507.
1507.
20.
10. | 239.
239.
239.
00. | 0.000 | | ร์ ฮ์ ซี ฟี ซี ซี ซี
N | | AL VELL'16
26619,
755,
4.13
104.96
2265,
2721, | | W W W W W W W W W W W W W W W W W W W | 20 4 8 8 8 8 8 6 2 3 | 50 Q.
MAG
MAG
MAG. | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | 1000 TEL | IC 3 | 200
200
200
200
200
100
100
100
100
100 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0 0 N/2
A A A ,
Ø Ø Ø Ø ;
A Ø Ø Ø | | 60cmc00 | | IW 4400 | = 31.
PLAN 1, RT | Ch. 200 100 100 100 100 100 100 100 100 100 | | 595.0
595.0
595.2 | | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 20.3 24.1
50. 10
50. 10
50. 20
50. 20 | STURAGE
HIDGAK | 0-17 FL
25 85 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 80 | 57A66
595.0
595.0
595.3 | | | | 66. 2011 | MAXI::UM | 2.
42.
91.
2349.
664.
118. | | 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | | 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 2.23
2.23
2.23
2.23
134
134
13 | | 2.00
2.00
2.00
6.00 | | | | ن ي | 61
6
60 | 200 - 100 - | C C C C C C C C C C C C C C C C C C C | | | * <u>\$\$</u> \$483 | | | HAXI-TULI STACE IS | | | | • | 795.0 595.0
595.0 595.0
595.0 595.0 | | | | | | 7, | 3. 24 | 26 | | 45C. 1C | 79, 1336 | 240 | | | • | _ | | | | • | • (| , | 7 7 | 3, 21 | | • | • | ، د | ָבָּי נְיִינְיִי
ביים כיים | • | 4 | 3000 0000
1000 0000 | 05.0 | | | 1066 | **** | 95.4 5.55 | 95.0 555. | 95.0 555. | 15.0 355. | | | | | | | | | |---|---|-------------------|--------------|---|---------|-----|--------------|-----|------------|---------|----------|-----|----------|------------|--|-------|----|------|----|----------|----------|----|------------|-------|-------------|-----|----------|----------|-------------------------------|--------|-------|------------------------|---------------|-----------|---------|-------|--------|-----------|-----------|-----------|-----------|---|----------------|-------|---------------------------------------|--|------|----------|---| | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | VCLLME
27949.
751.
4.33
105.95
2310.
2849. | | | | | -: | , 42
(42) | ٠, | ~ | 314 | 4 | 475 | 2 | x 1 | ċ | 2. | - | | ć | • | • | | | 26. | • | • 1 | , | °
C | •• | • | į | 3.4 | | • | • | , | | e, | 3. | 4 | 3.46.6 | | 7. 17 7 | 225 | | | • . | | 7 | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ICCR TCTAL
11.
• 32
• 85
• 65 | | RTIC 4 | | | | | | 7 | 245 | 62 | 607 | י
סיי | ٠. | 'n | 2. | 1. | | | , . | •
. c | | ۲. | U | | , , | . | •
• | • | • | ; | • | | • | 9 | | 9 | \$ | 95 | 35. | 952°C | | CLR TCTAL | • | - | : • | • | • | | | 595.0
595.0
595.0
595.0 | 72-H
33-H
109-
23-
28-
28- | m | | | | - | | • | 7 | 204 | 67 | | 7 (| , | ç | 2. | - | | Ċ | | • | | • 9 | | • | ┥, | • | ċ | င်ံင | • | | 5 | , | | 90 | 60 | 97. | 95 | 95. | 95 | 0.066 | | 72-11 | 24 | | 4 | • | <u>.</u> | | | π | 24-HDLR
1074-
3-99-
101-36
2129-
2626- | u
C | FIDCAK, PLAN | ! | CUTFLON | ۶. | | • (| • | 147. | 547. | | - 1 | S | 7. | 2, | 1. | STOR | C. | • | • | 2. | ۶. | 4 | • | v. | •
• | . | ٠, | • | STAGE | 0 | 2.0 | | 5.0 | 4.0 | 7.2 | 5,6 | 5.1 | | 2.0 | | AD. | 1122 | | 7. 7 | - (| 14.601 | | | 505.0
505.0
505.0
505.0 | 6-HOUR
2154.
25.00
50.42
1054. | MAXI,UM STG | TATION | | | 2. | | • | • *, * | 95. | 455 | | 4760 | 7 | 11, | 2. | | | ٢ | •
: < | •
c | 2. | 7 | ٠, | • • • | 3 | 5. | •0 | c. (| •
د | | ່ວ | 0.0 | 7.0 | 5.7 | c.3 | ۲. s | 2.2 | 5.1 | | | | 9-1:00s | 2251. | • • • • • • • • • • • • • • • • • • • | • 0 | 70.0 | 53.12 | | | | PFAK
CF5 2455.
CFC 70.
CFC CFC CFC CFC CFC CFC CFC CFC CFC CFC | 7. | S | | | C.) | | - | * Q * | 71. | 2 | | | •
() | • ? -4 | ** | | • | | | • | ۶. | 7 | ١. | • 6.0 | 12. | •1 | . | c. (| Ç. | | e j | <u>.</u>
ن | | ٠.
م | • | ر
د | 5 | · · | 4 4 | 0.00 | | ¥ | 7547 | • | ر
د د د د د د د د د د د د د د د د د د د | | | | | | ्त्र
स्थापन | 6 1 | | | | , | - | • | 4 2 | ٠,٠ | 1 2 4 | | • : 7: ^ | 107. | ۶,۰ | • | 1. | | • | • , | • | ٠, | ,, | • | •
•
• | 17. | • · | .1 | r. I | ·. | | 5.00 | 0.000 | 7. | 4.000 | 7.4.5 | 100 | 0.000 | | | | • | | | | | | | | | 505.2
595.2
595.0 | | MAXETHEL STAGE 15 | | | | - | • | • | | 47. | | - 1 | 1147. | 201. | ************************************** |)
 | • | | • | • | • | - | , | • | • | 17. | ; | - | • | c* | | 695. | 1,960 | 0.000 | 5:34.3 | 5000 | 30.00 | | | | 2.55 | | | | | | | | |) 0 3 . STATION "IPCAKE PLAN IS RTIE 5 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | | | |---|---
--|---| | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 04444 | | | | | C C M B N B N C C C | ANA TO THE PROPERTY OF PRO | | | 22 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 00450000
004500000 | 704 - *********************************** | 71C 6 | | FLUR
11.
212.
212.
2597.
502.
96.
6. | 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 35 PLAN 15 R | | 001FL
157.
157.
157.
112.
112. | N N N N N N N N N N N N N N N N N N N | 0 | RIDCAKA
DUTFL
2 2 2 2 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 25 45.
25 45.
718.
124.
13. | 0004m40000 | AAA | STATION 2: | | , | | 2000.00 (200 | | | 17.75.4.5
10.15.2.4.5
17.8.4.5 | | | eren
Ž | | 11.
50.
11.05.
11.05.
21.0.
36. | | | M1XI 111 STGGE 15 | | | | | × | | ; 🐧 | 04 N N N N N N N N N N N N N N N N N N N | 000mmeonmeo000
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | | | ~~
~~
~~
~~
~~
~~
~~
~~
~~
~~ | M44
0 M W W W W 4 4 0 0 | |--------|--|--|--|-------------------|--|---| | | 000000000000000000000000000000000000000 | | · | | 28.
10.33.
50.14.
60.18.
11.11.
9. | 0 m m | | | 500m64ch5c | | 91761.
359.
559.
4.92
124.95
2625. | | 4213
4213
4243
1236
100 | ପିଟିଲିକ ଓଡ଼ିଶ୍ୱିତ ଓ
ଅନ୍ୟୁକ | | 7. | | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | HCCR TCTAL
441.
12.
4.91
623. | 7.
RTIC 7 | 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000000000000000000000000000000000000000 | | ; | 00.17.
11.00.00.00.00.00.00.00.00.00.00.00.00.0 | | 72 | 37.
PLAN 15 R' | 11.
2.4.4.4.
10.20.0.
17.4.
17.4. | 00,40,400 | | : | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | Hrun 24-Hgu
447. 1224
63. 3.
2.27 4.
7.75 115.
7.75 258 | STORAGE . | 0 JTFLD
3 3 7 3 3 3 7 5 5 5 3 3 7 6 5 5 5 3 3 7 6 5 5 5 3 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | 27.
27.
27. | | ÷ | င်ဂလိုက်သို့ ကိုလိုင်စီ
င်ဂလိုက်သို့ ကိုလိုင်စီ | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 10 20 | MAXINUM | 25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0 | C 4 L % K L 10 | | - | င်တို့သို့သို့ ချိန်တိုင်းလိုင်း | | 8 | | 4 11 12 12 12 12 12 12 12 12 12 12 12 12 | ઇંડે કે કે તું કે તે હ | | •
~ | | | 12.0
1.0
1.0
1.0 | 8 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | દેર જિલ્લું ફું રહે દે | | • | | | | MAXIAUN STAGE IS | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | |) 🧿 🧿 | | | | 167.
167.
167.
166.
198. | 4004
0404460400 | 3.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000.0
0.000. | |--
--|------------------|--|--|---| | 00 c c c c c c c - | | | 2096
7006
7006
7006
1183
198
198 | 108 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.000 | | | VCIL NE 6351. 1755. 29. 90. 90. 90. 90. 90. 90. 90. 90. 90. 9 | | 121
121
1421
1421
1423
150
100 | 22.
124.
124.
17. | | | | 10 T T T T T T T T T T T T T T T T T T T | 69 | | | | | 00000000000000000000000000000000000000 | 72-H
24-9-28
55-4-9-88
65-24-9-88 | PLAN 1, RTIC | 132
132
132
10600
2016
348
358 | 250
250
230
230
000 | 0.0000000000000000000000000000000000000 | | | 0. 24-HULH
3. 24-L1
69. 24-C
20.43
88. 230.43
4841.
6. 5971. | MIDCRKy PL | - | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 60000000000000000000000000000000000000 | | 660
660
660
660
660
660
660
660
660
660 | 0-hf
494
13
13
114
291
297
MAXI:UH | STAT10% | 11 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 152.
152.
152.
111.
111. | 66699
66699
66699
66699
66699
66699
66699 | | | PFAK
(F.S. 5593,
(C.S. 157,
(C.S. | | 1999
1999
2706
2133
2624
1706
1706
1706
1706 | 30 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | 10
10
10
10
10
10 | 1.50 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 40 N + 7 + 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | MAXIACC STAGE 15 | 200
200
200
200
200
200
200
200
200
200 | | | COPP C 2789 C 2789 C 2789 C 2789 C 2789 C 278 218. 36. 6. 33 EMD-OF-PERIND UNDINATES, LAG= 5.13 FCLMS, CPm C, 36 VNL= 1.00 226. 334. 405. 417. 314. 312. 261. 21. 104. 89. 74. 62. 57. 43. 21. 18. 15. 12. 1C. 9. 7. RTIMP LUCAL 1STAGE RECESSION DATA STATQ= 6.00 GRCSN= 18.00 RTICR= 3.00 GIVEN SNYDEP CF AND TP ARF IC= 5.86 AND R= 5.58 ITTHAVALS **u** -10.00 10.00 456.75 1045.0 154: INA!.E ときゅうりょう りゅうしょうしょう ****** ISNCE JPR1 C STRTL 1.00 UNIT HYDROGRAPH DATA TP= 5.14 CP=0.56 NTA= C 19.66 499.34 10490. RATIC 0. PRECIP DATA - Spill pliS R0 R12 R24 R48 n. 20,00 102.00 115,00 125,00 134,00 TRSPC COMPUTED AY THE PPCPRINTS 0.025 SUB-AKEA RUNDEF CEMPUTATION ERAIN STRKS RTINK 0. 7. 1.00 END-DE-PERIOD FLOW COMP 3 HYDROGRAPH DATA TRSDA TRSPC 21.16 0. 16.15 460.91 9563. ***** THECK HYDROGRAPH -- SUBBASIN 3 ISTAG ICOMP INCON ITAPE SSN-3 0 0 0 MAKINIA STORAGE 230.12 4.04 230.12 4614 SNAP U. 0.03 0.12 RTINL 1,00 13 **** TAREA 5.89 EXCS C. er Terr APPRUXINATE CLANK CORFFICTE TS FACE 1017 HVN GSRAPH 3 14-07 87.18 9.01 STRYR C. JCA-1 ءَ ع MAXIMINI STAGE 18 0) | 8 74750 | 0 | |--
--| | ® * | ₹₽ ≂ | | 00000000000000000000000000000000000000 | 275
772
772
135
225 | | | | | ・ 「 | 24755
24157
24157
26158
1131
125
125
125
125
125
125
125
125
125
12 | | , a _ a a a a a a a a a a a a a a a a a | | | | 3 m m m m m m m m m m m m m m m m m m m | | | 1 100c Z * * * * * * * * * * * * * * * * * * | | | S.1-3
100.44
5000.44
5000.44
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
1 | | 2007 1 20 20 20 20 20 20 20 20 20 20 20 20 20 | 71707 P P P P P P P P P P P P P P P P P P | | 1924 000000000000000000000000000000000000 | 1 4 C C C C C C C C C C C C C C C C C C | | | 183. 183. 183. 183. 183. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17 | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | \$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | ୨୯୯୯ ଓ ୧୯୯୯ କରି ଓ <mark>ଅନ୍ତର୍ଶ ଅନ୍ତର୍ଶ ଅନ୍ତର୍ଶ ଅନ୍ତର୍</mark>
୧୯୯୯ ଓ ୧୯୯୯ ଅନ୍ତର୍ଶ ଅନ୍ତର | | | | | | 441
4424
4424
4424
4424
4424
4424
4424 | | 1242
1242
1242
144. | | 2000000
000000000000000000000000000000 | o ʻ; | |--|---|---|--|--|--| | 15.
282.
287.
810.
23.
23.
13. | | 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | . - : | | 10000
10000
10000
10000
10000 | VCLL"E
15599
445
445
10597
1257 | 2010
2010
2010
2010
2010 | VELL#E
16446.
466.
4.73
109.76
1256.
1577. | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 13154.
13154.
146.
114.
1753. | | - M + M + M + M + M + M + M + M + M + M | TCTAL | 71 T L L L L L L L L L L L L L L L L L L | TCTAL | 110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | R TCTAL | | 1266.
1265.
2655.
2655.
300. | 72-HCLR
218.
6.13
104.87
1296.
1595. | PLAN 14 R
11 11 11 12 12 12 12 12 12 12 12 12 12 1 | 72-HCLR
226.
4.33
109.86
1358. | R PLAN 1, RT 11, 11, 11, 11, 11, 11, 11, 11, 11, 11 | 72-HCR
235.
7,
4,52
114.65
142C.
1751.
PLAN 1. R | | 291.
291.
291.
291.
19. | 24-HOUR
603.
17.
3 18.
96.69
1474. | BSN-3 FCR
101.
101.
102.
504.
101. | 24-HDLR
631.
18.
3.59.
101.30
1252.
1544. | #54-3 FCR
100
100
100
100
100
100
100
100
100
10 | 24-H7LR
560.
15.
15.90
1309.
1615.
1615. | | 200
200
200
200
200
200
200
200
200
200 | 1200
1200
1200
1300
1300
1300
1310 | A 10.110.00.00.00.00.00.00.00.00.00.00.00. | 6-HGUR
1262,
36,
1,09
50,04
626, | A T T T T T T T T T T T T T T T T T T T | ST 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | PEAK
1361.
39. | 147.08.06.8.4.0.1.0.0.0.1.0.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.0.1.0.0.1.0.0.1.0.0.0.0.1.0.0.0.1.0.0.0.1.0.0.0.1.0.0.0.1.0.0.0.1.0.0.0.1.0.0.0.1.0.0.0.0.1.0.0.0.0.1.0.0.0.0.0.1.0 | .
РЕАК
1426.
40. | ARGGRA
1 | PEAK 3-11
42. 2
62. 2
52. 52. 62. 7
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7 | | | 8888 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 110,420,44
110,420,44
110,420,44 | 25 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 140% | | | | CFS
C 15
C 15
C 65
C 75
T 64
C 75
C 75 | 1 | , | | 3 | | | | | | | ÷ |) | | | 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 26.00 P | |---|--|--|-----------------------| | 25.
162.
22.
22.
22.
10. | 2466
2666
277
277
277 | 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 74.
76.
105. | | 2672
10573
1554
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11574
11 | 12822.
12822.
12822.
13862.
13862.
13862.
13862. | 124.95
154.95
154.95
1054.95
106.95
106.95
106.95
106.95
106.95
106.95
106.95
106.95 | N 0 - €
m 2 | | 176.
2371:
232.
38.
38.
1.
C. | 71C 6
11.
13.24.
1324.
25.
25.
10.
C. | 10 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 10 8
16.
77. | | 137.
446.
45.
45.
10.
72-HCLP
249.
119.85 | PLAN 1. PT
1.
19.
149.
149.
477.
477.
72-HCLR
72-HCLR
72-4.559. | 124.44
154.4
154.4
154.4
120.6
2.0
2.0
2.0
2.0
2.0
15.0
15.0
94.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15 | PLAN 19 RT | | 24-Huck
619.
24-Huck
619.
25.
4.25.
110.51 | PS 1-3 FCR
115
115
1250
1245
160
160
160
160
160
160
160
160
160
160 | 115-11
1423
1755
20
20
20
20
20
20
114
114
114
114
114
114
114
114
114
11 | RSN-3 FCR
3.
1. | | 393.
397.
66.
4.
1.
1.37.
2.17.
2.17.
2.17.
55.24.
642. | A AT STA
24.
58.
58.
59.
10.
10.
14.
14.9.
14.9. | 24.55
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21.15
21 | STA | | F: AK 1550. | нтовповар
200
1020
1020
1020
1020
466
466
466
466
466 | 1 YOKUGRAPH
2. 2. 13. 219. 319. 32. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13 | 20kHGPAPH AT | | 7 | | 11.75 GO P
11.77 CFS
11.77 CFS | | | 11.
11.
12.
13.
14. | 20.
20.
27.
814.
650.
111.
16. | 3.
10.27.
1342.
1342.
235.
11. | ie e | , , | • • •
• 11 m | _ | | ************************************** | |---|--|---|---| | 2 m ↔ | ************************************** | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 7626.10
74755.
74755.
7170.08
499.00
6178. | * BBASIR, 3 | 74
104
104
104
104
104
104
104
10 | 24424444444444444444444444444444444444 | | 16.
10.
7CTAL | * * * * * * * * * * * * * * * * * * * | R T T T T T T T T T T T T T T T T T T T | PTIC 2
2 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 13.
10.
10.37.
10.66.
499.37.
6173. | PHS 1-2 | 5 PLAN 1
2 2 4 4 1
2 2 3 5 5 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | PLAN 1
24 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 12.
5.
2.
2.
2.859.
18.13.
460.44.
5692. | ###################################### | 2 169.5
200.
200.
520.
142.
9.
142.
142.
3 44.
3 44.
3 44.
3 44.
3 44.
3 3 192. | 2. 169
2. 11.
2. 11.
2. 12.
12.
13. 14.
16. 13. 18. | | 17.
2.
2.
6-m.u.s
5734.
172.
230.19
230.19
2845. | curbine HY chaire Ruuteb | HYDROGRAPHS A 257. 257. 257. 257. 257. 257. 257. 157. 157. 157. 1570. 1540. 1540. 1540. 1570. | HYDKRGPAPHS AT 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 21.
2.
2.
Prak
5480.
193. | ###################################### | 213 0F 2 HV
32.
114.
2592.
115.
2092.
20.
20.
20.
20.
20.
20.
20. | 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2 | Þ | 22 14. 27. 12. 25. 14. 25. 14. 25. 14. 25. 14. 25. 14. 25. 14. 25. 14. 25. 25. 14. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25 | | |
 | 6
8
6
6
7
8
8 | 0 - 4 5 - 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 4000
4000
40000
10000
10000 | | 2124112
2124112
2124112
34600 | · | |--|--|--|--|--|--| | N N N N N N N N N N N N N N N N N N N | | 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 60000000000000000000000000000000000000 | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 V V V V V V V V V V V V V V V V V V V | | VES 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 |
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4. | | | # # # # # # # # # # # # # # # # # # # | TETAL | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 767A Ł | α 4800 μ
Σ 2000 μ
Σ 300 μ
Π 300 μ
Π 300 μ
100 μ
10 | 167.1 | | PLAN 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 72-HCLR
616-
17-
109-36-
3566-
4522- | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 72-HCLR
644.
15.
4.52
114.65
3432. | 5 PLAN L
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 72-HTLF
0-72- | | 185
11.
11.
12.
13. | 24-HGLR
1700-8
46.
30.59
101.34
4171. | AT 169.5
2.50.1.169.5
69.7.1.11.1.1 | 24-HULR
1782.
50.
4.17
105.54
3535. | AT 169. 2 20.2 20.2 3.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 | 24=MOUR
1845- | | HYDERLORAPHS AT 1 | 6-HRUR
3415.
3415.
2.00.
2.00.
1654.
2089. | HYDROGRAPHS 3. 11. 66. 176. 3724. 1072. 164. 15. | 6-HTUR
3570.
1010.
2.09.
53.06
1771.
21.4. | HYDRGGRAPHS 3. 10. 104. 4069. 1116. 129. 16. 16. 16. | 5-H70R | | 2 | PEAK
3681.
110. | Str. of 2 HM
3 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | PFAY
4037.
114. | SUP OF 2 HY
3 137 251
137 4
1374 4
1324 2 | 42 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 2 | CFS
2020
EST
2020
2020
2020
2020
2020
2020
2020
20 | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2 | 200
200
200
200
200
200
200
200
200
200 | 2 12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | | 5.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | | | | 5 C C | 2000
2000
2000
2000
2000 | | 10.00
20.00
40.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | | 400 400 400 400 400 400 400 400 400 400 | | |---|---
---|---|--|--| | 24
8 4 4 4 4 4 6 4 4 6 6 6 6 6 6 6 6 6 6 6 | | 6 6 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 127.
266.
3472.
10867.
1857.
306.
26. | | | 0 25 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | VCLL 36
96440 0
1420 0
4 0 0
4 16 0
5 14 0
8 14 0 | | 2457.
2457.
2457.
9.44.
249.90.
16350. | 2022
8248
8248
8642
1242
1242
1243
1243
1243
1243
1243
12 | 20175 '.
20175 '.
371".
15. '. | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | TCTAL | 7 1 1 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 | TCTAL | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1C TAL | | PLAN 1
2.
2.
2.6.
216.
812.
147.
10. | 72-HTUR
700-
700-
7-51
124-64
4166-
5138- | PLAN 1 5. 5. 1111. 5. 728. 5. 728. 5. 728. 5. 728. 5. 728. 5. 728. 5. 728. 5. 728. 5. 728. 5. 728. 5. 728. 728. 728. 728. 728. 728. 728. 728 | 72-HCLR
14Cc.
9.63
249.67
R331. | PLAN B
2007-09-09-09-09-09-09-09-09-09-09-09-09-09- | 72-HCLR
20CC•
75•
19•66
499.35 | | AT 169.5
11.
12.
12.
17.
17.
12. | 24-HGC
1997-
1997-
1135-15
3843-
4740- | AT 169.5
5.
126.
126.
1213.
1910.
1210.
23.
23. | 24-hilk
3875.
9.67
230.35
7696.
9481. | 15 AT 169.5 13. 232. 1163. 17637. 1997? 635. | 24-HTR
7751.
219.
18.14
460.73 | | HYDDI GPAPHS
3
1
10
72
192
4209
1159
1159
1159 | 6-H ⁻ UR
34:11.
110.
2.27.
57.68
1925. | HYDROGRAPHS 6. 143. 143. 427. 4357. 833. 833. | 0-HTUR
7705.
7105.
4.51.
114.49
3820.
4713. | HYDRIURAPHS 11. 4. 274. 13-22. 17-32. 4771. 56. 16. | 15487.
439.
9.06
230.15 | | N
L | PFAK
4374.
124. | ~ | 8773.
248. | ~ | PEAK
17637.
499. | | | 2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5 | Star of
6.
100.
317.
(129.
2746.
406.
90. | | 20 00 00 00 00 00 00 00 00 00 00 00 00 0 | 2 K S S S S S S S S S S S S S S S S S S | | | 10 M | | ं ``s | 12.
14.
14.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17 | : | | | | 1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | |) | | | | | | | | | 150.51 | 5.Cd | \$62.16
511.11 | 4795.Ce | | | | | | | | | | | | | | | |---|--------------------|-------------------------------|------------------|-------------|------------------------------|----------------------|---|----------|-----------------------|------------------------|---------------------|--------------|---------|------|---|--------------------|---|------------|------|---------|-----|------------|------------|---------------|---| | | | | | | | | , | 18
84 | 31992 | Ŋ.W | , | | - | , Ç. | • 7 % 9 | 52.5 | • • • • | ٠,٠ | • • | | | · .• . | | .· : . | ; | | **** | | I AUTO | | | | | | 136,76 | 3476,09 | 501,26 | 3476,09 | | | | | ~ | * 4×4 | | ;: | | 32 | · | : ; | ;;; | • | | * | | ISTAGE | LSTR | 15PRAT
0 | | | 9 | 101,52 | 544,38
978,73 | 500,37
509,32 | 2544,38 | | ~ | | | | | | | | • , | • • | •• | * .*. | · | | * | | RESERVE 3H
RT INAME
C 1 | | STC! A | | | 90*554 | | ς.
Ω 33 | | .4 | | | ` . | a û | 2714 | , , , , , , , , , , , , , , , , , , , | | ·. ~ | | | _ | | | | | *** | | 23 AT RESE
JPRT | 2
2
2
3 | 15K | | | 325°00 | 61,90 | 1554,14
24862,10 | 499°47
508°42 | 1554,14
24888,10 | 1 2 | 2. | ٠., | 4 C C C C C C C C C C C C C C C C C C C | 3) 37. | 121. | | · .: | | j. | ; <u>.</u> | 21. | ٠.2 | • | | | UTING | STATION
JPLT
0 | 1001
0 | × • | | | 30°567 00 | 64.49 | 1278,13 | 498,58
507,53 | 1278,13 | PLAY IS RTIC | | | 54. | 3452 | 714. | = | m - | | င် | # #
5 ~ | , 5
53. | . 7. | | | **** | HYDROGRAPH RCUTING | 17APE | RUUTING DATA | AMSKK
O. | | 5£1
0.19682 | TC
0 275,00
0 | | | ra Q | ~ | LUWCAK, PI | DUTFLOW | | • • • | | F47. | | | | , C | • | 23. | ่๛้ะ | | | * | HYDRUCH | € = | RUUT
IMES | 1 A G | | RLL.TH
1465U. 0 | #ELEVETC
0 500.00
0 512.00 | 47,56 | 791,78 | 497,68
506,63 | 791.78 | ATION LOW | | | | | | | • | • | 0 | • • | 2. | | | | -
-
-
-
- | | RUUTING DE | 0.4°C | JGTSN
0 | | ELFAX
512.0 | STAFELEVSTAFELE
502,00 270,00 5
502,00 420,00 5 | 31.17 | 18-1564 | 496,79 | 403,40 | STAT | · · | | 32 | 3231 | 1333 | , ~ | - | - | | | | | | | ·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
· | | CHAINEL RE
ISTAU | | 687785
6 | | ELEVT
495.0 | :0 | | | | | | ſ | 7. | | 2735 | 1192. | 7.5 | · • | - | ů | o - | 2.5 | · · | | | | | ŧ. | \$2,15
1, | | C) 1
2 1
2 1
2 1 | 71. (9)
0. 16 9 6 | 2014 11 21 20 20 20 20 20 20 20 20 20 20 20 20 20 | 15.32 | 127,36 | 4.95 + 49
6.04 + 40 | 127,30 | | • | • • | *2* | · C | , <u>, , , , , , , , , , , , , , , , , , </u> | • •
• • | r | • | 43 | . . | - ^ ! | •
!: -
 | | | 中语:在《华书》《安 | | | | | 192 37 X40 | 3 C (21
51 542646 | CK.SS SEFTION COLORITATES CK.SS 180.00 512.00 400.00 130.00 | 313.47 | ,
,
,
,
, | 490. FU | 04.57.40 | | | • - | | • .
. : : : : . | (°) | • 100 | , r | e
FV | c' | · • | :: | • 1.7 | | | | | | | | PRINCIPLE OFFICERS OF SOLVES | 0.550
0.550 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | STJPAGE | Unfelow | 57.406 | 815 13 | - • | | | | | | | | |) | : | đ | > | C |) | C |) | • | | € | | . . . Ø. | ! | 44444444
000000000000
440000000000
00000000 | | | 20 m m m m m m m m m m m m m m m m m m m | | 11111111111111111111111111111111111111 | |----------
---|---|----------------|--|--|---| | • | | · | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 00465460000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | • | 33000000000000000000000000000000000000 | 7 C C C C C C C C C C C C C C C C C C C | | 2 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | ದಿದ್ದಿಗಿದ್ದಿ ಸಿನಿಪಿಸ <i>್</i> | aaaanaasa
nnnnnnnnnnn
n n marmi | | ٠ | 4444)44444
0000000000000
0000000000000 | 16.
16.
19.
19.
10. | C 2 | | 00077770000 | 4444444
00 00 00 00 00 00
00 | | •
၁ | 64444444
6466444
6466444
6466444
64664444
646644444 | 12 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 64 | AN 13 | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 00~448w00c | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | • |
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495
14495 | 24-Hill
1550
1150
1250
1250
1250
1250
1250
1250 | OMC RK. | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | x | 44
44
44
44
44
45
45
45
45
45 | | ٥. | 60000000000000000000000000000000000000 | 2000 C C C C C C C C C C C C C C C C C C | 8141103 | | \$\$ 7 7 8 8 F F F F F F F F F F F F F F F F | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | , •
O | 72 F40 40422
5440234044
5440256
574704666 | 999
800
800
800
800
800
800
800
800
800 | | 04004000
04000
04000
04000
04000
04000
04000
04000
04000
04000
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
040
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400 | | | | • • | | 4-00
4-00
10
10 | .91.3 | 21.5
21.5
21.2 2
25.2 2
25.3 2
25.3 2
25.3 2 | | | | • • | 6.00 (1.00 (| | 51 | | | | | | | | NAXIMU i STAGE | | | | | | | | A IT | |) a | o o e |) 9 0 9 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |) M
W W W W W W W W W W W W W W W W W W W | | . () () | | | |-------------
--|---|--|---|--|--| | | 400 | , 40
, 60
, 60
, 60 | 0011700 | | W C C C W W W W W | | | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 10 mm | 0 2 M P C 0 8 2 | 44
64
64
64
64
64
64
64
64
64
64
64
64
6 | ************************************** | 49960.
1257.
1257.
166. | | M | 6 th 10 1 | 187567 | 00~80° | 16161 | 44844444
0000444
000464
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164
00164 | TCTAL | | IN 12 AT 1C | 22.59 | 148 | 00~4N@#C | 0.
0.
495.0 | 495,4
496,3
497,6
495,0
495,0 | 12-HCL
616
17-10-6 | | DWCRK, PL/ | CUTFLOW
1.
1.
187. | 14.
170.
170.
170.
170.
170.
170.
170.
170 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0.
0.
0.
57AGE
495.0 | 69999999999999999999999999999999999999 | 24-HOUR
1705:
275:
101:34
33:1: | | 7A710N | 68 11 68
11 68 11 | 2012 | | | | 6-HFUR
3-602.
1-60.
1-99
10-17. | | ٠. | 0 x 0
of ⊶ u x v | ************************************** | 00 M P 0 M 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | PEAK
3862.
109. | | ج.
• | 1.
7.2.
7.2. | e e e e e e e e e e e e e e e e e e e | | | | 25.01 | | 13 21 | | ************************************** | | | | | | STAC | | | | | | | | | S - 1.4 . STATION LOWCRK, PLAN 1, RTIC | 15 1.4
STATION LOWERK, PLAN 1, ATIC 3
CUTFLON 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 15 | 15 | | STATION LDWCRY, PLAN 1, RTIE 3 2 2 2 2 2 2 2 2 2 | | 1914 0 5 F 6 6 6 | | 0,400,0000 | | | 0 * • • • • • • • • • • • • • • • • • • | |--|--|---|--|-------------------------|---| | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | | 24 24 24 24 24 24 24 24 24 24 24 24 24 2 | | 26906
26906
26916
1089
1089 | 000000000000000000000000000000000000000 | 0.000000000000000000000000000000000000 | | | 2000
2000
2000
2000
2000
2000
2000
200 | | 4 MW | 0 0 4 5 M 6 M 6 M 6 M 6 M 6 M 6 M 6 M 6 M 6 M | | L VCLC//E
464/4.
1314.
1314.
114.95
3835.
4721. | | 440000
4400000000000000000000000000000 | | ###################################### | 00 ~ W 4 ~ W 000 | 444444444
0000000000000000000000000000 | A | ن م | 20000000000000000000000000000000000000 | | 52.
271.
271.
807.
153.
13.
3. | 00-400000 | 4444444444
999999999999999999999999999 | 7 11 22 | 2/.
AN 1, RTIC | 4 | | 262
263
263
363
175
175
175
175 | κς ο μων ο ω ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο | STAGE
495.0
495.0
495.0
495.1
496.1
495.0
495.0 | -HOU
1782
50
4.1
50
50
50
50
50
50
50
50
50
50
50
50
50 | STURAGE LOMCRK, PLAN | 0417FLG%
3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | 124.
124.
125.
1155.
705.
705. | 024740
024740
004150 |
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
64444
6444
64444
64444
64444
64444
64444
64444
64444
64444
64444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6444
6 | 352
2 2 2 52 17 17 2 17 2 1 1 1 1 | MAXINUM ST
STATION L | 213
213
213
213
213
213
31, | | | 20-70-44-00
20-70-44-00 | | PEAK
6029
114. | | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | : | | | CF5
CNS
17C-85
NC
NC-PT
TF-UCS CL | . 1 • F | | | 491733733 | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | ILI STAGE 15 % | | | | | | ^ | MAXIMEL |) 3 0 0 | | ้องก็ก็ก็ | 44444444444444444444444444444444444444 | | 244
24044
240444
 | | |---------------------------------------|---|--|--|--| | 460000 | 44444444444444444444444444444444444444 | - | | 00446 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 444444444
2015-64444
2016-6444
2016-6444
2016-644 | 12 VCC 38
464324
13714
4 72
116 55
46374 | 2 m m m m m m m m m m m m m m m m m m m | 20467,60000 | | , r m c c c | 44444444444444444444444444444444444444 | HTCR TCTAL
19:
19:
9:84
999:
933: | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2 | 00 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 24
28
20
30
30
30 | 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 000 000 000 000 000 000 000 000 000 00 | 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 00 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | ភូទិភិព
ភូទិភិព
ស | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 6-HCUR 24-H
105.
105.
2017
55.16
1441.
2270.
45 | CGLC3K, PLAN DUTFLON 3, 1, 75, 2222, 4331, 1056, 189, 189, 189, 189, | | | 25.
10.
3.
1. | 444444444
666664000
2006600000
200644001 | БАК
79.
18. | STATION
3.
143.
4000.
1234.
221.
221.
23.
25. | 00 N M N N N N N N N N N N N N N N N N N | | . 17
. 17
. 10
. 10
. 10 | 44444444444444444444444444444444444444 | 2008
2008
2008
2008
2008
2008
2008
2008 | 3347 28 2654 2658 2658 2558 | 0001087 | | | 00 2 2 7 NA 2 2 3
6 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 74 C 47 | 501.7
2.00.7
20.00.1
1746.
1746.
200. | | | | | | # STACE 18 | | | | | | MAXIAN TO THE STATE OF STAT |) ♡ ● |) o o o C C C | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | N 6
4 N 2 M 4 M M N
4 N 2 M 4 M M N
M N O N M N O M M N
M N O N M N O M M N
M N O M M N O M N
M N O M N
M N O M N
M N O M M N
M N O N O M N
M N O M N
M N O M N O M N
M N O M N O M N
M N O M N O M N O M N
M N O M N O M N O M N
M N O M N O M N O M N O M N
M N O M
N O M | 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | $a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a$ | |--|--|-----------------------------------|---|--|--| | 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 1002
1003
1003
10031
1011
105 | อ๊ | 4495.0
4695.0
4695.0
4695.1
4695.1 | | 444
0.004
0.000
0.000
0.000 | VELLUE
56450.
1420.
124.05
1143. | | 2000
2000
2000
2000
2000
2000
2000
200 | ಪಿರಿಸಿದ್ದಿದ್ದಿಗೆ ಬಿಡಿದ
ಪರಸ್ತಿದ್ದಿ | 44444444
000000000000
0000000000
00000000 | | 4444
0000
0000
0000 | 11 11 12 12 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 | ۲ | | 00 v « ၏ v 4000 | 444444444
000000000000000
000000000000 | | 496.0
495.0
495.0 | 72-HDCR
200-
124-691
5136- | 29.
IN 1, RTIC | 256
256
266
266
266
266
266
266
266
266 | 00 4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 44444444444444444444444444444444444444 | | 496.1
496.1
495.0
495.0 | 24-HULR
1937-
1937-
115-15
115-16
4740- | TORAGE'=
LOVCRK, PLAN | DUTFLON
6.
133.
193.
491.
8740.
2023.
366.
42. | 8 | STAGE
495.0
495.0
497.0
497.0
496.7
496.7
495.1 | | 496.2
495.2
495.0
495.0 | 5-HCUR
3160.
2.26
57.47
1914. | NAXINUM STORAGE
STATION LOVCRK | | 00 8 8 8 7 8 8 0 0 | 00000000000000000000000000000000000000 | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | PEAK
CPS 4331.
CNS 123.
ENS 123. | | 2000
2000
2000
2000
2000
2000
2000
200 | · | | | . 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3. t
3. s ts t | 5.104 | 122.
142.
142.
3435.
115. | 200000000000000000000000000000000000000 | | | 6.45.4
6.45.4
6.45.4
6.45.4
6.45.4 | | MAXIAUN STAGE IS | 1.
3.
1.56.
7.26.
7.26.
1.31. | | 0.00 | Q ₹. <u>-</u>, · 🚙 1014 VELLT, 100/01, 2757, 2757, 249,10 72-HELF 140C 4Cc 9-83 249-67 3331- 24-HGLR 3874. 110. 9.07 230.30 7665. 6-HFUR 7722. 219. 4.52 114.75 3829. PEAK 8740. 247. STATION LUPCIN PLAN IS RTIC 8 52. MAKIMUN STACE 15 | • | - | 202 | 26C. | 4212. | | | 1652 | 288 | 25. | 10. | | • | | . | 2. | 4 | 8 | | 200 | .5 | • | - | ů | ຜ | | 482.0 | 455.7 | 456.4 | 90106 | 204.2 | 24884 | 456.4 | 455.2 | 493.1 | 0.454 | | | | | | | | | |---------|------------|-----|-------|-------|---|----------|-------|----------------|------|-----|----------|--------|------|----------|----------|-----|------------|-----------|-------|-----|----------|----|----------|-----|-------|-------|--------|-------|--------|-------|---------|----------|----------|--------|-------|---|---------|---------|-------|-------|---------|--------|--------------| | , | 0 | 47. | 237. | 2967 | | 10101 | 1974. | 340 | 33. | = | | ; | | 0 | • | | , | • 0 5 | • 20 | 14. | so. | 1. | •0 | 0 | | 495.1 | 495.3 | 496.3 | 9,000 | 8.406 | 4.664 | 4.96.4 | 495.2 | 495.1 | 495.0 | • | | | | | | | | | , | | ¥. | 210. | 2200 | | | 2410. | 413. | 90 | | • | ; | | 0 | · c | | ` <u>'</u> | | | | * | - | , | 0. | | 495.1 | 4.65.1 | 496.2 | 5 56 5 | 503.4 | 500 | 496.8 | 40.00 | 495.1 | 495.0 | • | VELL'IE | 2017CO. | 5714. | 19.60 | 01. 655 | 1667.4 | 26572. | | • | • | ۲, | 204° | 1703. | | 1000 | 2851. | * 5 # * | 42 | 7 | , | •
n | | ڻ | <u>.</u> | , , | , | • • • | 5 | 5.7 | . | - | ن | ؿ | | 495.1 | 7.667 | 456.1 | 7.654 | 506.0 | 500.1 | 0.724 | 457 | 495.1 | 495 | • | 1 TETAL | | | | | | _ | | ; | :: | , | | | • | - | | | 57. | | | | | 0 | ć | | | ~ ~ | \$ S | 23, | ģ | ; | •0 | •0 | | 195.1 | 95.0 | 96.2 | 98.7 | 5 90 | 501.3 | 97.2 | 4.56 | 95.1 | 95.0 | • | 72-HCLR | 2800 | 75. | 19.66 | 46.66¢ | 16662 | 20552 | | DUTFLON | 12. | | 253 | | • | - | _ | | 65. | | | | STOR | c | ó | . 4 | • 0 | • | 62. | 23. | , | 2, | ٠
د | 0. | STAGE | • | | | | | 501.9 | | | | | | 24-HOLR | 7748 | 219. | 18.13 | 460.54 | 15367 | 18956 | | | 12. | 4. | 304 | | | _ | • | | | | | | | ċ | | • | • | • | . [8 | 33, | æ | 2. | 0. | ° c | | | | | | | 502.3 | | | | | | 6-HCU? | 15423. | 437 | 9.02 | 229.20 | 7648 | 9434 | | | | | | | | | | | | | | | | | | • | • | | | | • | • | | | | | | | | | | | | | | | PFAK | 17528. | 499 | • | | | | | | 7 | • | 326. | 1 1 | | 7 | 3630 | 996 | 140 | : 5 | 1 | • | | C | · C | • | . | , | ~ | 35 | c | ñ | 9 | C | | 45.5 | 155 | 45.7 | 4.7. | 505 | 5.2.3 | 000 | 6.63 | 4554 | 554 | • | | C.F.S. | 5:0 | THES | | 14- | r | | | • | • | 4 7 7 | , , | • | • | 7:55 | 1134. | , L. | . , | | n
D | | ζ. | | • | . | • | · ``` | 44. | <u>:</u> | e, | Ċ | ئ | | 455.0 | (1.0.) | 6.69. | | , e | 1, 3, 1 | | 7 . 45 . | 7.454 | 1,67, | • | | | | | • | Ĵų | 1 11 S 11 12 | | | <u>.</u> : | , | 07.6 | , , | | | 6324. | 14.4. | 2.50 | | • | • | | ć | Ċ | • 、 | • | ,• | | , |]: | 7 | | • : | | 1,465 | 0.004 | | | 503 | 503.7 | 7 7 60 5 | 40312 | 4.35.2 | 495.1 | • | | | | | | | | MAXILUM STORAGE = 85. 1.36. MAXI HILL STAGE 19 7 *** **ઝ** →) ၁ Ö .4143 1 0 R72 C. FRECTP DATA R48 102.50 115.00 125.00 134.00 SPE 2015 20.000 TRSPC COMPUTED BY DISTRICT BANK IN U.S. 25 RTIMP O. ALSMX CNSTL 0.05 STRTE 1.00 RT INK LUSS DATA STRKS FRATU. 8717L 1.03 94.16N ¥... ULIT HYDRUGRAPH DATA The RECESSION DATA SIGTOM 5.00 GRCSWM 15.00 RTICRW 3.00 GIVEN SNYDER CF AND TP ARE TCM 5.14 AND RM 5.32 INTERVALS APPRIXINATE CLAPK CHEFFICIENTS FKG. 179. VCL = 1,00 216, 33, 5, Z 3050505050505050505000055005556556 4.68 FELMS, GP C.56 315, 261, 48, 40, PERICO E: D-OF-PERIOD FLOW 31 END_GF-PERIOD ORDINATES, LAG. 253. 405. 378. 152. 44. 70. 58. 15. 13. 11. 9. CALL HYDPUGRAPH 3E215 14.1. 10.10 11.10
11.10 10.1 600000000 00111 | ***** | 889.78 | | | | | |--|--|--|--|--|--| | 0000000 | 2,38
61.)(18 | 4 M
M M 4 4 30
M M 4 M M M M M M M M M M M M M M M M M | | 44
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | • | | 000000 | 19,72
(501,1) | 0.
2720.
2720.
270.
102.
13. | | 293.
293.
293.
107.
14. | | | 17 8 9 K 9 K 9 | CF 22.11
(561.)
VELUNE
0672
1957
1957
1957
685 | 11 12 12 12 12 12 12 12 12 12 12 12 12 1 | 18343.
18343.
18373.
185.
186.
186. | 06 a m m c x N a c | VELLYE
14015•
357•
4•13
104•33
1420• | | 100 0000
100 0000 | TCTAL | | TCTAL | | TCTAL | | 144888888
144888888 | 72-HELP
926.
19-66
19-66
591.
591. | PLAN 12 RT
13.
112.
049.
179.
27.
20. | 72-HCLR
185.
3.53.
99.83
1102. | PLAN 1. R1
1.
1.
1.
1. 1.
1. 1. 1.
1. 2. 8.
2. 8.
2. 8.
1. 0. | 72-HELP
195.
4-13
104.84
1157. | | 2000
5905
5905
5246
4488
3199
2701 | 24-HDLR
2578,
73.
18,24
63.24
5114. | 854-4 FCR 10.00 11 | 24-HULR
516.
15.
3.65
92.65
1023. | BS'4-4 FGR B 2240. | 24-HOUR
541.
15.
3.83.
97.28
1074. | | *********
******** | 6-HIUP
5271.
150.
9.34.
237.23
2619.
3230. | 11. 57 STA | 6-Hrup
1056,
30,
1,47,45
576, | AT STA | 1109.
1109.
1.96
49.42
550. | | | PFAK
6130.
174. | DRNGRA | PEAK
1226.
35. | HYDRUGRAPH 10 20 20 20 20 17 214 214 30 21 214 21 214 21 214 | PEAK
1297.
36. | | | 683
663
17 6458
11 70 70 11 | | — √o | | CPS
CAS
TI CPS
14 - 27
14 - 27
14 - 27
14 - 27 | | 20012010 | i5 41 | 1 6 4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 76.47 | 1. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. | | | 1.02 20.13
1.02 20.13
1.02 27.13
1.02 23.13
1.03 0.13
1.03 0.13 | | A 11/2 4 | | , y & Lt. | | Ç C (| 40
00440
00440
00460 | | 04000 | | 84 m
C | | 2 C . | |---|---|--|--|---|---|-----------------| | 307.
704.
112.
114.
00. | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 126 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | ° 61 | | 28 28 28 28 28 28 28 28 28 28
28 28 28 2 | VCLLNE
14682.
416.
4.33
109.92
1213.
1457. | 0
100
217
8711
1411
200
100 | 15350.
15350.
435.
4.52
114.92
1269.
1565. | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | VGLLME
16017.
454.
4.72.
119.91
1324.
1633. | 11. | | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | TCTAL | 100
100
100
100
100
100
100
100
100
100 | TCTAL | 10000000000000000000000000000000000000 | TCTAL | ٠٠, | | 11111111111111111111111111111111111111 | 72-HUR
204.
4.32
109.84
1212. | PLAN 18 R
11 11 11 12 12 12 12 12 12 12 12 12 12 1 | 72-HCLR
213.
213.
4,52
114,83
1268. | PLAN 36 R
11 11 11 11 11 11 11 11 11 11 11 11 11 | 222 8 | 103
103 | | 2934
2934
2934
2000 | 24-HOUR
567.
16.
101.91
1329. | 852.4 FER
100
1006.
1006.
1006.
1006. | 24-HnLR
593.
17.
4.19.
106.55
1176. | 854-4 FCR
100-116-1111-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 24*HJLR
01 | 4, | | 2449
2449
2449
2499 | 6-HFUR
1142.
33.
2.05
52.19
570. | H AT STA STA STA STA STA STA STA STA STA | 6-HFUP
1215.
34.
2.15
54.56
602.
743. | H AT STA
1.00
100
100
110
110
110
100
100 | 6-HFUR
1267.
36.
2.26
56.94
629. | - | | 7 | 1349.
1349.
38. | H Y DROGRAD OF THE COLOR | PFAK
1410.
40. | 1. 98.06.8.4.9. 14. 22.9. 14. 2.9. 14. 2.9. 14. 2.9. 2.9. 2.9. 2.9. 2.9. 2.9. 2.9. 2. | PFAK . 1471. 42. | HYGRAGRAP
1. | | | 0.5
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | enen
enen
enen enen kannen
enen enen kannen | CPS
CASA
PK
SASA
PK
CASA
CC M | | 14-0v
14-0v
15-0v
16-0v | : : | | ~ | ع ا | <u> </u> | F |
 | ÷ | | | 8.65
6.65
7.7
8.8
8.8
1.0
0.0 | | 4 6 6 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | ଳିପିଟିଫିରିଟିଫିଟିମିଟି
ରାଜୀ ଲଫନ
ଉପ | | : نـ | | | | | | | | | Ð 0 O o o o o | | | 40000044000
40000044000 | | 22 22 22 22 22 22 22 22 22 22 22 22 22 | | |---|--|---|--|---|------------------| | 127.
127.
16.
20.
10. | | 2569
11
2569
139
139
139 | ٠ | 2
102
1306
1396
503
603
7 | | | 225
225
225
225
225
225
225
225
225
225 | VCLLME
16644.
472.
492
124.91
1399. | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 245.
245.
245.
245.
245.
245.
245.
346. | 0 40 40 40 40 40 40 40 40 40 40 40 40 40 | | | 1122
1122
1122
21
21
20
10 | TCTAL | 20 M | TETAL | 7110 8 2 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4
4
5
1 | | 1140.
1140.
3312.
33.
20. | 72-HCCR
232,
232,
124,62
137,62
137,62 | PLAN 1. RT. 2. 3.2. 2.3. 2.4.8. 66. 2.5. 2.1. 2.2. 2.2. 2.2. 2.2. 2.2. 2.2 | 72-HILL 46611-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6- | 7 20 20 20 20 20 20 20 20 20 20 20 20 20 | | | 12.
14.
14.
14.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15 | 24-H ^O CR
645.
18.
115-81
1278. | 85444 FCR
10
2340
23520
5410
10
10
10
10
10
10
10
10
10
10
10
10
1 | 24-HNLR
1289:
37:
9:12
231:62
2557:
3154: | 5 4 4 5 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | 20.
80.
80.
927.
1.
1. | 1370.
1370.
370.
23.
25.13.
66.55. | 5 t a | 2641.
2641.
75.
138.62 | A T | • | | 144 A | PRAK
LVAU. | | PEAK.
3065.
87. | H-70K1GRAPH AT 1. 1. 79. 200. 356. 200. 6130. 157. 1507. | | | | 8 (1) S (0) S (0) | 2000 | CFS
CDS
17 CFES
17 CFES
17 A CFE | | | | | . F | 2.
59.
1693.
1136.
11. | Ė | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | ŧ | 40
044
40-042
60-400904604 | | 404
404
404
404
404
404
404
404
404
404 | | 444
444
4446
4464
4464
4464
4464
4464 | | |--|---|---|--|--|--| | 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | W W W W W W W W W W W W W W W W W W W | | 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | ମିନ୍ଦ୍ର ନେ ଓଡ଼ିଶ୍ୱ ଲି
ମଧ୍ୟ ଅନ୍ତର ବର
ଜଣ ଅନ୍ତର ନ | 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | 50000000000000000000000000000000000000 | 2000 mm m m m m m m m m m m m m m m m m | 2000 C C C C C C C C C C C C C C C C C C | | | TCTAL | 1 | TCTAL | # 2460
 | TCTAL | | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 72-HCLR
783.
723.
4.13
104.65
4656. | PLAN 1
22.
22.
23.
23.
177.
14. | 72-HCLR
82C.
23. | | 7 1 23 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 24-1.
2017.
2018.
202.
202.
202.
203. | 5 A7
3 2 3 3 4 2 2 3 3 4 4 5 1 5 2 3 4 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 | 24-HDLR
2166.
2166.
3.81
96.75
4297. | Z B B L S S S S S S S S S S S S S S S S S | 24-HOLR
2269. | | HYDRISSRAPHS 6
1 | 4133.
113.
117.
1.82
40.16
2050. | HYOKGGRAPHS 6
3.
13.
182.
1333.
1333.
230.
55. | 6-HGUR
4338.
123.
1.93.
2.53.
2.551. | (YORGURAPHS) 1 1 1 1 1 1 1 1 1 1 | פ-אנוטא
ביייי | | <u>.</u> | P P P P P P P P P P P P P P P P P P P | N | PEAK
4925.
139. | ~ | X 4 3 4 | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2 | ;
 | | | # 15 m | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1.
1+96\$ | | · <u>.</u> | | #1 | | 4 C C C C C C C C C C C C C C C C C C C | | ************************************** | | | | | | | | | ~) o o o | | | 4 | APHS | AT 23 23 23 23 23 23 23 23 23 23 23 23 23 | PLAE. 3. 2. 77. 401. 401. 401. 401. 401. 401. 401. 401 | # W4 W W W W W W W W W W W W W W W W W W | 1 | 447
447
404
404
404 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | |--|--|---|---
--|--|--|--|--|---------------------------------------| | | | | | | | 122. | | | ฒฑ⊶ | | , | CFS
CGS
INCHES
RH
ACET
TENES CU M | PEAK
5387.
153. | 4748.
4748.
1348.
22.09
53.02
2354. | 24-HDLR
2833.
105-61.
105-61.
5805- | 72-HTLR
857-
24-
114-84
51CC-
625C- | TCTAL | 46106
61764.
1749.
1749.
114.95
5164. | | | | 000044
400000
400000000000000000000000 | S 4 | 504 DF 2
3.
3.
158.
158.
4582.
311.
548. | HYDKDGKAPHS 4. 4. 218. 218. 5325. 1507. 260. 34. | 4 6200
+ 8000
+ 8000 | 10000000000000000000000000000000000000 | E 0000
E 00000
E 000000
E 0000000
E 0000000000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | CFS
CMS
INCHES
XM
AC AC TT | ያ ያ ያ ያ ያ ያ ያ ያ ያ ያ ያ ያ ያ ያ ያ ያ ያ ያ ያ | 4953.
4953.
140.
2.18
55.30
2456.
3029. | 24-HGCR
24-76.
2 70.
10.58
4910.
6057. | 72-HCLR
894.
25.
4.72
119.63
5322.
6564. | TCTAL | VELLME
1925.
1925.
19.04.
19.04.
19.04.
19.04. | | | | | 2000
1000
1000
1000
1000
1000
1000
1000 | SUM CF 2
4,
2,
105,
105,
1373,
324,
54, | HYDRUGPAPHS
4,
1,
1,
232,
232,
5532,
1,560,
270,
35, | A 2600 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | WW. W. | 2.
2.04.2.
3.04.2.
3.66.4.
3.27.
3.7. | | | | | | | | | 342346 | |---|--|---|---|---|---|---| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | * | Og | 3 A | | 2020
2020
2020
2020
2030
2030
2030 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | ** | TAU. | 10°0808 | | | # • • • • • | , | മയ്ക്കു.
മയ്ക്കുന് | | PLUG Q
ISTAG | 15PR31
499,00
527,00 | | | TAL VELL-16
134769.
14. 14.
247. 38
11.657. | 1000
1000
1000
1000
1000
1000
1000
100 | TAL VELLNE
2663384
16646
1968
22153
22153 | ************************************** | 3.5 3.4
2.5 3.4 4 | | | | , | 1 811C
2 24.
2 24.
2 24.
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4 • • • • • • • • • • • • • • • • • • • | * | 25.53 | 154
469
2244
2244 | | 159.
159.
11221.
2158.
376.
32. | 72-HCL
1863
249.6
11086 | 3 PLAN
1473
1473
720
18. | 72-HCL
3-72-HCL
19-6
19-6
19-6
22173 | 7126 | ELEV 499 | | | | 24-HOUR
5160.
146.
230.49
10236. | A WWW. A W W W W W W W W W W W W W W W W | 24-HRUR
10324•
10324•
18•15•
461•12
20477•
25258• | ************************************** | LICREST
TAPE
T.C. DAT
15APL | A X X X X X X X X X X X X X X X X X X X | | PAPHS A1 2 2 17 17 17 17 17 17 17 17 17 17 17 17 17 | 7664424 | ~4 W W | 20053.
5853.
9.08
9.08
10241. | ***
HYDRDGF | CAN - SPII
IECON
O
ROUTI | 91
4 | | 2 HYDANGR
B.
1102.
11060.
3138.
529.
12. | ¥ • • | 2 HYDK JÖRAPHS
15.
303.
1099.
22853.
22853.
1018.
125.
23. | 1934. 26. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10 | * * | 1004P
1004P
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | HSTOL | | 21.0
22.0
22.0
23.70
23.75
20.16
10.0
10.0 | | SLM UF. 14. 42.1. 14. 42.1. 126.2. 125.1. 25.1.
25.1. | 5 CA | *************************************** | ROUTED DUTE
1STAR
DAM
CLUSS | 5 d 15 5 | | | CFS
CAS
CFCNES
(FCNES
AM
ACFT
TF-CS CU M | 10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | CFS
CMS
TI-CHES
NN
AC+FT
FI ULS CU M | | 350 12
0.05 | | | ************************************** | | 25 0.0
25 0.0
25 0.0
26 0.0
24 0.0
32 0.0
31 0.0 | | ·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
· | | 436.00 | | | | | | | | > | C | CREL SWID CUNK FRY ELEV CCT LATE TAPE CONT. | Tree Star Con RP Con Con Con Con | Tipel Cole | | #1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | | ، لاياد | | | | | 1 | 1 | 1 ' | | | |---|---
--|----------|---|---|----------------|-------------|------------------|----------------|---|-----------------------|------------------|------------|------------|------| | TIPPE COND EAP DEATE A 65.0 STATION DAMA PLAN IS BATIC 1 EAD-GR-PE 11DD FYORDCRAPP (RC11 ATE 5 1 | Tipe Color Feb Feb Color Feb Color Feb Color Feb Color Feb Color Feb | Time Color Easy Easy Easy | | | | CRE | 30 | | | ELEVL
0, | ر
دور
دور | | 7 % O | | | | STATION DAMP PLAN IN PARIE I EKD-DF-PERIOD EYORGRAPH FELT ATES LOTTELS 3 | ### CONTROL 1974 19 | ### Compared to the plan is still to the plan is still in in the plan is still in the plan is still in the plan in the plan is still in the plan th | | | | | | TCP | 1:
20 % | 4 DATA
E4P
L. | CAPE | ບ• | | | | | 1. 1. 1. 1. 1. 1. 1. 1. | CTTFLC 3 1 1 1 1 1 1 1 1 1 | CTTFLE 3 | | | | | | - | Δ | PLAN | 4 R 2 | | | | | | 1 | 1 | 1 | | | | | | END-3 | C1834- | YDROGR | 7 83 | ΔTC | | | | | 1 | 1 | 1 | | | | | , | , | CUTFL | 4 | r | | 2. | ۶. | ~ | | 175, 275, 275, 275, 275, 275, 41C, 55, 575, 111, 122, 41C, 55, 575, 111, 122, 41C, 55, 575, 111, 122, 41C, 55, 575, 111, 122, 41C, 55, 575, 111, 122, 41C, 575, 122, 111, 122, 123, 123, 123, 124, 125, 125, 127, 127, 127, 127, 127, 127, 127, 127 | 1 | PEAK HUTHLED IS AND ACTION ASSISTANCE AC | | | • | | (v) + | m - | ~ ~ | ٠. | . 60, | | | | 3.2 | | 1 | 1 | 1 | | 7 | | | • • • | | 7. | 2 | Ç | | ~ 4 | 0 | ~ _ | | 174, 277, 234, 202, 133, 754, 645, 132, 117, 274, 277, 234, 277, 234, 277, 234, 277, 277, 277, 277, 277, 277, 277, 27 | ### 1990 | 17. | | | r. | Ξ, | . | 152 | 2 C | 314 | 1
1
1
1
1 | , ee | . 0 | 9.0 | | | 174 | 77. 75. 75. 75. 75. 75. 75. 75. 75. 75. | 77. 77. 724. 727. 724. 727. 173. 173. 175. 173. 175. 77. 77. 77. 77. 77. 77. 77. 77. 77. | | .⊈ (| ##127
************************************ | 0.4 | • | 3 . 5 | . 6 | 93.5 | 707 | | | 533 | | | 170. 45. 37. 27. 18. 45. 45. 57. 18. 45. 45. 45. 57. 18. 45. 45. 57. 170. 170. 170. 170. 170. 170. 170. 17 | 170 | 77. 177. 177. 173. 173. 173. 173. 173. 1 | | / i | 76 E | 27 | • • | 234 | 3 | ~ | 5 | | N : | _, | 3 | | 7. | 77. 77. 77. 77. 77. 77. 77. 77. 77. 77. | 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7 | | . ~ | 5 | • | | ~ 1 | 27. | eo . | | | · · | · m | | | \$\frac{17a}{17a}\$ \text{17a}{17a}\$ \text{17a}\$\$ \text{17a}{17a}\$ \text{17a}\$\$ | \$700 AGE 170
170 1 | \$\text{\$175}\$ 175\$ 174\$ | | | . ^ | | ۴.
2. | ۰, ۰ | • | ; : | | | : : | - | ~ | | 173 | 170 | 177. 177. 177. 177. 177. 177. 177. 177. | | | • | | • | • | | | | | | | | | 17. | 17. | 17. | | | , | • | • | 673 | 5 T N P A | 178 | 7.6 | - | - | 7.8 | • | | 162 | 101. 102. 103. 103. 103. 103. 103. 103. 103. 103 | 19. 16. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18 | | ~ . | 17. | | = •
m ′0 | 179. | - 5 | 2.8 | 120 | _ | ~ | 5 | | | 164. 185. 187. 187. 172. 244. 244. 247. 244. 253. 254. 255. 255. 255. 255. 255. 255. 255 | PEAK HUTFLE IS ANY 18 A | 154 154 185 187 | | <u> </u> | 201 | • • | . ~ | 183. | | ιζ
(N) | 20 | | ~ 1 | 29 | ٠. | | 735. 246. 253. 295. 205. 702. 703. 197. 197. 197. 197. 197. 197. 197. 197 | 227 234 246 223 223 223 225 225 225 225 225 225 225 | 227 224 224 223 225 225 701 199 199 189 189 189 189 189 189 189 18 | | 2 4 | 401 | | | 187. | £ | 25 | · 7 (| - (| ~ < | 76 | | | 221. 215. 213. 204. 205. 187. 187. 185. 185. 185. 185. 187. 187. 187. 187. 187. 187. 187. 187 | 124 127 121 129
129 | 225. 221. 210. 213. 104. 105. 115. 115. 115. 115. 115. 115. 115 | | 2.5 | 286 | | • | 253. | 5 | 5 | 2 5 | 46 | * 0 | 6 | 4 41 | | 132. 191. 189. 179. 179. 179. 179. 179. 179. 178. 178. 178. 178. 178. 178. 178. 178 | 194, 197, 191, 199, 191, 199, 191, 199, 191, 194, 197, | 174 | | 22 | 221 | | . | 213. | 60 | 5 3 | 3 2 | ` - | | . 12 | • | | 172. 101. 178. 178. 178. 178. 178. 178. 178. 17 | 179. 172. 178. 178. 178. 178. 178. 178. 178. 178 | 174. 177. 178. 178. 178. 178. 178. 178. 178 | | 12 | 192 | | . | 169. | 9 3 | 5 6 | <u>.</u> | ۰ | . 0 | 4 | œ. | | 176. 178. 178. 178. 178. 178. 178. 178. 178 | 173. 174. 176. 174. 174. 174. 174. 174. 177. 178. 177. 178. 178. 177. 178. 178 | 173. 174. 178. 179. 179. 179. 179. 179. 179. 179. 179 | | 91 | 132 | | • . | 100. | 2 6 | - 60 | - | - | TC. | 7.8 | | | \$\$\text{\$\ | STAGE 495.0 465.0 465.0 495.0 495.0 495.0 495.0 495.0 495.0 495.0 495.0 495.0 495.0 495.0 495.0 495.0 495.0 495.2 495.3 495.3 495.3 495.3 495.3 495.2 496.4 495.2 495.3 495.4 495.5 499.7 495.6 495.0 496.2 496.4 495.3 405.3 405.3 495.4 495.0 4 | STAGE 495.0 | | <u> </u> | 3/1 | • • |
 | 178. | 7.3 | 78 | 2.0 | ~ | ~ | C : | رف | | \$\text{16.5} \tau \text{495.0} | PEAK HUTFLE. 15 4619.0 495.0
495.0 4 | 95.0 4 | | - | • | • | | | | | | | | | | | 495.0 | PEAK HUTFLE: 15 4479, 4650 4650 4650 4650 4650 4650 4650 4650 | # # # # # # # # # # # # # # # # # # # | | • | ur
U | 4 | • | 5 | 57 A G | 495. | 55. | | _ | 95. | 7 | | 495.2 495.3 495.3 495.3 495.3 472.3 472.3 472.3 472.3 472.3 472.3 495.2 496.4 456.4 456.0 499.8 456.0 496.4 456.0 499.0 495.1 496.9 496.7 456.9 496.2 496.2 496.2 496.2 496.2 496.2 496.1 495.0 495.1 495.0 | PEAK HUTFLE: 15 455.2 455.3 455.3 456.3 456.4 456.2 466.4 456.3 456.2 466.4 456.3 456.3 456.2 456.3 45 | PEAK HUTFLED 15 465.2 465.3 495.3
495.3 49 | | 10: | 402 | | | 32. | 55 | 95. | 3 | | _ | , , | | | 465.3 495.4 495.5 499.7 495.8 449.4 455.0 498.6 458.0 459.2 499.1 449.8 449.3 496.2 458.0 499.1 449.8 496.3 496.2 458.0 459.3 495.1 495.1 495.1 495.1 495.1 495.1 495.1 495.1 495.1 495.1 495.1 495.1 495.1 495.1 495.0 495.0 459.1 495.0 495.0 459.0 459.0 459.0 455.0 495.0 495.0 495.0 495.0 495.0 495.0 495.0 495.0 495.0 | PEAK HUTFLED 15 465.3 465.5 465.4 465.6 465.4 465.6 465.4 465.6 465.4 465.6 465.4 465.6 465.4 465.6 465.4 465.6 465.4 465.6 465.4 465.6 465.4 465.6 465.4 465.6 465.4 465.6 465.4 465.6 465.4 465.6 465.6 465.4 465.6 46 | PEAK HUTFLEL IS 465.5 495.6 49 | | 000 | 455 | ·* | 4 | 35. | 95. | 6 | | | - | | | | 453.2 499.2 499.6 499.8 497.1 496.3 496.2 456.2 | PEAK HUTFLE 15 447.2 497.0 497.0 497.1 40.5 406.2 496.2 496.2 496.2 496.2 496.2 496.2 496.2 496.2 496.2 496.2 496.2 496.2 496.2 497.9 497.3 497.1 495.0
495.0 495. | PEAK HUTFLED. 15 4696.2 4696.2 465.2 466.3 496.2 466.2 466.2 466.3 496.2 496.2 496.2 496.2 496.2 496.2 496.2 496.2 496.2 496.2 497.9 497.9 495.1 | | 100 t | 455 | 4 | 5 | 5 | 5 | |
 | | | 98 | 9 | | 455.0 | PEAK HUTFLE. 15 4676, 4776, 4756, 49 | PEAK HUTFLE: 15 4476.7 495.6 495.6 495.6 495.8 495.5 495.5 495.5 495.5 495.5 495.5 495.5 495.0 4 | | 150 | 49.0 | · · | 7. | ٠
د
د
د | 9,4 | 96 | | | | 96 | ġ, | | 455.2 455.2 495.0 495.0 495.0 459.0
459.0 | PEAK HUTFLE: 15 4476, 495,0 49 | PEAK HUTFLE. 15 4676, 495, 495, 495, 495, 495, 495, 495, 495 | | 165 | | * · | <u>.</u> . | | 95 | 95 | 53. | | - | 5 | , n | | 455.0 495.0 495.0 495.0 455.0 459.C 495.0 455.0 | PEAK HUTFLE: 15 44-79, 495,0 4 | PEAK HUTFLE: 15 4676, 495,0 4 | | 6.65
6.75 | 100 | | . ~! | 95. | 95 | 95. | 65 | | - | n v | | | | PEAK HUTFLE: 15 44 19, AT TIME 45,00 HUHRS PEAK HUTFLE: 15 44 19, AT TIME 45,00 HUHRS CFS 4679, 4115, 2063, 745, 1721, CMS 132, 1721, 58, 21, 1721,
1721, | PEAK HUTFLE: 15 46.16. AT TIME 45.00 HOHRS PEAK HUTFLE: 15 46.19. A115. 20.43. 745. 34709. A115. 20.43. 745. 345. 345. 345. 345. 358. 241. 1.01. 3.04. 40.02. 44.15. 1.02. 1.0 | | 1 16 0 | 455 | 2.4 | ⊃.ú | 5.50 | 95. | 95. | 55. | | | 25 | 35 | | | PEAK 6-HCUR 24-HCUR 745. 172. 29709. 4115. 2043. 745. 172. 172. 2043. 745. 172. 172. 2043. 745. 172. 172. 2043. 745. 172. 2043. 745. 172. 2043. 745. 172. 2043. 745. 172. 2043. 7445. 2043 | PEAK 6-HOUR CAMBOOK (Z-NICK) CFS 4679, 4115, 2063, 745, 1721, CMS 132, 117, 1.01 92,15 99,00 MM 2041, 4092, 4415, COAFT 2017, 5041, 4092, COAFT 2017, 111, | ` | - | • | | • | | Ġ | , | • | 7 | 97 | | | | MENK TOTAL OF A SECTION OF THE SECTI | INCHES 132, 117, 58, 21, 1721, | INCHES 132, 117, 58, 21, 1721, 146,95, 92,15, 92, | | | | 995 | ۍ د | トガロン | 7 | · · | | | • | | | | PEAK HOIPLES 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ##CHES 1-#1 92-05 5-50 5-50 5-50 5-50 5-50 5-50 5-50 | ##CHES 1.01 92.05 95.00 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 |) | | | SEO | , ~ | | | • | = " | ? ₋ 1 | • • | | | | FEAK HOIFLUM IS TOTAL TOTAL BEAK 6-HOUR
24-HOUR 72-HOUR ICTAL V 4115, 2063, 745, 56, 21, CMS 132, 117, 58, 21, | AC-FT 2041, 4092, 4419, 2041, 2041, 2041, 4092, 4419, 2041, 2041, 4092, 4419, 2041, | AC-FT 4092 4479 4092 4479 4092 4479 4092 4479 4092 4479 4092 4479 4092 4479 4092 4479 479 479 479 479 479 479 479 479 47 | | | | SHOW | | | ٥ | ی د | ~ " | • • • | Ş | | | | FEAK MOIFLE. 13 T. 1. 1. 1. 2043. 72-HELR TCTAL V 4115. 2043. 745. CMS 132. 117. 58. 21. CMS 132. 117. 58. 3.53 | The state of s | ENGAGE COM STATE TO SELECT | > | | | E ! | | | . 4 | | . 4/ | | | | | | FEAK HOLFLUM IS TO | The state of s | The state of s | | | ş | ن
د: | | | • | | . , | | . | | | | FEAK HOLFLUM 13 TOTAL PEAK 6-HEUR 24-HEUR 72-HEUR TETAL V 4115, 2063, 745, 745, 745, 745, 745, 745, 745, 745 | Control of the contro | The state of s | C | | | | | | | | | | | | | | PEAK HOIFLUN IS TOTAL PEAK 6-HEUR 24-HEUR 72-HEUR TETAL VALLS 2063 745 745 745 745 745 745 745 745 745 745 | · · · · · · · · · · · · · · · · · · · | COMPEDATO PROPERTY OF THE STATE | • | | | | | - | | • | •. | | | | | | PEAK HOIFLUM 13 TOTAL PEAK 6-HFUR 24-HFUR 72-HFUR TCTAL VALLS 2063 745. CMS 132 117 3.63 3.53 INCHES 45.95 92.15 92.15 AC-FT 2041 4072 4.75 | | COTFICA 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 9 | | | | | Ġ | # ₽€?;" | 1. 4. 1. A. | • | | | | | | PEAK HOLFLUM 24-HOLR 24-HOLR 72-HOLR TCTAL 4679, 4115, 2063, 745, 745, 68, 745, 745, 745, 745, 745, 745, 745, 745 | | | | | | | | | | | | | | | • | | | 1788
1786
1786
1786
1786 | 44444444444444444444444444444444444444 | | 20000000000000000000000000000000000000 | | |--|---|--|---|--|------| | 2000
1000
1000
1000
1000 | 1148
1148
1186
1186
1186 | 4444444
000000000000000000000000000000 | | | 179. | | 2000
0000
1200
1200
1100 | 11182
2262
2262
11186 | 444444444
0000000000
000000000
00000000 | VCCL:
56355.
18576.
18676.
1861.
5749. | | | | ###################################### | | 44444444
00000000000
20000000000000000 | R TCTAL SATIC 3 CROINATES | ちょうしゅうしょう しょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうし | 103. | | 334.
7776.
9978.
180.
19. | 178.
183.
192.
255.
1186.
178. | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 72-HCL
72-HCL
72-1
72-1
72-1
72-1
74-5
57-4
57-4
87-4
87-4
87-4
87-4
87-4
87-4
87-4
8 | 7 2000 71 | 178. | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | STURAGE
73.
89.
57.
57.
74. | 27 A A A A A A A A A A A A A A A A A A A | 24-HOUR
2166.
261.
3.81.
96.76.
4297.
5300.
DAM. | 00TFLOW
3.
3.
553.
553.
55
570RAGE | - | | 26 - 2 | mmm.00.mm | 00w0r/nr/n20
4444444444 | 6-HCUR
1320.
122.
1.90
44.24
2142.
2642.
STATION | 25 L 20 | 7 | | 16.1
1837
1846
1847
1848
1848
1848
1848
1848
1848
1848 | 4 K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4505
4505
4505
4505
4505
4505
4505
4505 | 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 8 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1.1 | | 24.24.24.24.24.24.24.24.24.24.24.24.24.2 | | | 0501 FI | 2400
2400
2400
2400
2400
2400
2400
2400 | ~ | | ###################################### |
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000 | 00040-0000 | ± 5× | | | | 42
42
42
44
44
44
44
44
44
44
44
44
44
4 | 2011
2012
1014
1014
1014
1014
1014
1014 | | | 23.00
23.00
23.00
23.00
24.00
27.00
27.00 | í | | | | AX nUTELD * | | | | | | | C C XAR |)) 0 | o o o o e | | • | 177.
177.
178.
178.
49. | 4444444 | | ************************************** | De la | |---|--|---|---|--| | 179.
178.
178. | 44444444
00000000000000000000000000000 | | 2 1 C C C C C C C C C C C C C C C C C C | 178.
179.
183.
704. | | 201
201
201
201
201
200
201 | 4444444444
90001000
9000100
90000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000 | VCDU
185080.
16739.
169.33.
48830.
6623. | 4 2 4 4 6 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | 187
175
178
178
178 | 4444444
4444444
4444444
44444444444444 | R TETAL | CRDINATES 20 20 20 40 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | 178
1976
1976 | | . CO CO CO CO . | 20 W W W W W W W W W W W W W W W W W W W | HALR 72-HELR 1.27C. 82C. 82C. 633 8599 109.85 553. 6017. | UTFLOW 3. UTFLOW 3. 1. 82. 3. 52.23. 7. 1059. 1. 21. 22. | 1178
1178
1293
1293
1293
1293
1393
1393
1393
1393
 | 43 C C C C - | 44444444444444444444444444444444444444 | 10 04W | m a a a a a a a | STURAGE
173.
173.
184.
186.
264. | | 190
190
178
178
178 | 00000000000000000000000000000000000000 | 6-HCUR
4525-
128-
128-
1-99
50.52
2244-
2767-
STATION | END-UF-P
3,
137,
187,
187,
1893,
1493,
266,
66, | 2011
2011
2011
2011
2011 | | _ | 44444444444444444444444444444444444444 | 45,00 HBURS
PEAK
5153.
146. | 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | 646
646
646
646
646
646
646
646
646
646 | | | | CFS CRS IF CAREN | 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | £ 61 c | 22 8.5.
24.5.
64.3.
64.3. | 177 | | | | PEAK NUTFLE. | | | | | | PEA | | | , , , , | 24-H5LR 72-HELR IETA
2373- 857-
67- 4.52
105-98 114.84
4707- 51CC-
5805- 6251-
DAM- PLAN 1, RATIE 5 | HYDRUGRAPH CRCINATES N 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. | 86, 75, 75,
388, 506, 665, | 4953, 4780, 9605
932, 785, 657 | 72. 149. 130
16. 12. 11 | | 178 178 | 179 179 | 202 | 244 | 186 | 10. 179 | 17 | •65 | | 000 | | 300 | 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * | 41 J | • | | ار بار
د د د د د د د د د د د د د د د د د د د | | 5 12 7 | |---|--|-------------------------------|-----------------------------------|----------------------------|------------|---------|--------------|--------------|----------------------|------|-----------------------|--------|--------|--------------|-------|--------|-------|---|--|---|-------------|---|---------|----------------------------| | 24-H5LR 72-HFLR TETAL VELL
2373. 857. 476
67. 46.52
105.98 114.84 114.8
4707. 51CC. 51C.
5805. 6251. 625 | HYDROGRAPH CRCINATES N 3, 3, 3, 9 | 86. 75. 75
388. 506. 665 | 4593, 4760
932, 765 | 72. 149
16. 12 | |). L | | : 5 | 44. | | 2 - | • | | ٠. | 9 - | | ? ! | • | <i>:</i> , | <i>:</i> | | ٠
١
١
١ | 77 | 127 | | 24-HCLR 72-HCLR TCT
2373. 857.
673. 24.5
105.98 114.84
4707. 51CC.
5805. 6251. | HYDROGRAPH CREINAT
h
3. 3. 3. | 86. 75
34d. 506 | 25.6
25.6 | 75
16 | ÷ | • | | | | | | | , | | , , | | | • • | | | | ; ; ; | 7 - | Λυ | | 24-H5LR 72
2373-
67-
67-
7-17
105,98
1707-
5805-
Dawa Plan | I HYDROGRAPH
.Oh
3. | 86
343 | | | | | | , O | 0 . | 9 | 5.0 | | į. | Ç | 5 | ; ; | ن ن | , , , , , , , , , , , , , , , , , , , | 6 | Ď | | | .72 | 6.2.3
6.4.3 | | 2474
2474
2474
2474
2474 | <u>.</u> 9 | | ~ ~ | 201 | 2,00 | 97. | 178. | 3 3 | 4 | 3 60 | 2: | 178. | 55.0 | 5 | 56 | | 9 | 493.3 | Ġ | 95. | | 72 | | 37 11. 5322
3. 6564 | | NO. | -PERIOD OUTFLO | 91. | 5607. | 234. | , ~ ~ | ~ · | | 20 20 | • • | ~ œ | 00 1 | ~ ~ | STAGE | 7.624 | 40504 | 57.0.3 | 1.204 | 40,507 | 495.0 | 6.5.5 | | 24. | | 0 110.39
4911.
6058. | | 6-H7UP
4730.
134.
2.08
52.81
2445.
2893. | ND-UF. | 51.
197. | 231. | 276. | 9 ~ | | 178.
173. | σε σ | 9 | ~ 0 | · 30 | ~ ~ | 5
4 | 0.56 | 4.00 | 0.00 | 37,3 | 43543 | | 695.0 | 2.5 | 6-HFU | 140 | 55,10
2447.
3018. | | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | m c | 84.
30. | 200 | | , 1 ~ | 1 | 3
2
3 | en -0 | 3 10 | 26 | 22 | \sim | | | | | | 6.654 | v o | | 45,00 HELLR | PFAK | 55.1 | | | 243
243
243
243
243
243
243 | · (*) | | 3444. 44 | 15.6
20.0 | | | 179. | | | 26. | | 175. | | | | | | 0.00 mm | • • | | 7T TI'E ' | i | 0 K E U | | | · | <i>:</i> | ເປົ້າ
ເປັນທີ່ ປຸ
ເກີດ | 226% | | * * *
d | | 17 | 101. | 1000
2000
2000 | | • •
() ()
7 = | 177. | | ್ .
ಪ್ರದಿ | 4.004 | 4.75.4 | 4000 | 1 * 01,5 | \$ 10 mm 1 | 4.5.0 | 57.6 | PEAK PUTEL | | | | | , | ÷ | ~ | 466 | 2 | 574 | 2 | 2 | (1) | | | 78 | ξ | CI. | 5 | 5 | . | 0 0 | ر د
د د | 178 | ď | • | • | - | | <u>.</u> | • | | 9.464 | | | | | | | | | | | | | : |) {E • | 103. | 18. | 5,1,2 | . 100 | |----------------|------|-----|-----|-------|---|---------------|-----|-----|------|---------|------|------|------|------|--------|------------|---|---|------|-------|------|--------|--------|---------|--|----------------------------------|----------|-------|-----------------|-----------|------------------------|------------------|-------|-------|---|-----------|--|---|----------------|---|----------|--------|-------|------|-------|--------| | (| | 78. | 5. | 2 | ···c | 74 | - | , , | - | | ~ | ~ | ø | 206. | 246. | •002 | ٠
د د
د د | 6,71 | 176. | 5 | 32 | 95 | 96 | 6 | 96 | • | | 0 564 | | | | | | | | | | | | • | : | | 176. | 187 | 224. | • 61 2 | | - | | 78. | š | | £ 15 | <u>۔</u>
ی | ٠- | -5 | | | ~ | ~ | J. | C | S O | ، د | n c | | 173 | 495.6 | 2000 | 4.55.4 | 496.4 | 0.5e4 | 4.00 × 0. | 1 - 1
1 - 1
1 - 1
1 - 1 | | 404 | | אַנור ינּ | 7 . | | | 9545 | | | | | | 1 | · | • | 91.11 | | 187. | - | | ,, | | • | Ξ | ς. | 895 | 7.8 | | • • | 1 | | 178. | 178. | 183. | 197. | 262. | , co. | 000 | . 7. | 178. | 95. | 35 | 35. | 96 | ာ
(၁ | | • | | 495.0 | | R TCTAL | • | • | | | • | FATIC 7 | | • | | | | :: | | ونبه | 187 | | | 4 | | | S | 8.5 | 60 | 2 C B | 2 | 1 | 2. | | 78 | 78 | 84 | 46 | 9: | <u>د</u> و | ٠, د
د | 20 | 178. | 5 6 | 5 | . 66 | 96 | 00 | | 447.0 | , v | 495.0 | | 72-HC | 9 | , | 124 | | | , PLAN 1, | (a) (a) (b) (b)
(c) (c) (c) (c) (c) (c) (c) (c) (c) (c | | | | | | • | 0 | 178 | | | OUTFLOW | • • | , | 9 | 835 | 1367 | 247 | - E | , | 2. | STORAGE | 73. | 7 | T | 6 | 3 | ^ (| 2 0 | ? C | 173 | 95. | 5. | 95. | 95. | 000 | . 4 | | | 495.0 | | 24-HJL | 2575
CF | 7 4 | 115.2 | 5116 | | Avd NO | 4 Cul 4 3 3 | | . . | | | | | PAG | • . | | | · | • ~ | 0 | 207 | 2 7 | 1613. | 700 | 47. | • • | 2. | | 7.8 | 7.1 | š | č | 264. | `∶; | 7 | 5 P | 173. | 3.5 | 95. | 95. | 95. | 00 | | 430. b | •
• • | 0.564 | . \$2 | 8-HPUR | 5137 | 140 | 57.37 | 2547 | | 11-15 | | | | | | • | • | ; | , | | | ţ 4 | | | | . (99 | 2+5 | 20.00 | | | 2. | | 2 | 7 | 84 | 137. | S (| 5 | , | 3 2 | 1/9. | c | , : | ū | ķ | 15. | ~ 0 | <u>ب</u> م | , (| 0.464 | 45.00 HBUR | PEAK | n , | c | | | | | | | | | | | • | : : | | | | r | . ~ | | | 7.6 | 200 | , , | . ~ | • • | • • | | 17%. | 174. | 164. | 135. | ・する | 221. | • | 17. | 179. | 6.0 | 20. | 6.3 | 4.0 | 3. | ດ 1
~ | | | | AT TI'E | | Λ ii
ii
ii
ii | (1.1.)
(1.1.) |) E | 14-0V | 7 | | | | | | | | | | • | | | • | بع د | | | | • | • | | • | · pr | | 17. | 17. | 132. | 1~4. | , j'c' | | 175. | • | 174. | - | | | 4.05.4 | | | < | | | ٠ ئار. | | | | | _ | - | | | | | | | | | | • | | | | | | | • | J (* | • | | | | | | | | | | | | | | , | • .• | 4 | • | | • | 1 3 | - 4 | 4 | PEAK OUTFLOW IS | | | | | | | | | | | | | | • | | | | | 20.
20. | TIMESCOMPE
TIMESCOMPE
TIMESCOMPE
TIMESCOMPE | 444444444
444444444
4444444444444444 | | ULOULOUL
VENOULUS | 22000
24000
24000
24000 | |---------------------------------------|---|--|---|--|--| | 22. | 171
181
224
213
213
179 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 24 64 64 64 64 64 64 64 64 64 64 64 64 64 | 1920
255
255
201 | | | 173
179
187
281
281
286
196
179 | 44444444
99992599999
88992599999
649544499 | 134271 • 34271 • 3462 • 9 3427 • 10 3 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14 14 14 14 14 14 14 14 14 14 14 14 14 1 | 1160
1191
1191 | | n u m
m | 178
203
203
222
222
192
179 | 444404444
6065000004
000000000
00000000000000000000 | ับ
๒ (| A E E E E E E E E E E E E E E E E E E E | 1191
1191
1191
1191
1191 | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | E 173. 174. 174. 200. 229. 191. 191. 179. 179. | 444484444
60046444
80046444
800464
900464
90046 | 7 | 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 173.
191.
221.
322.
255. | | • • • • • • • • • • • • • • • • • • • | STURAG
173.
173.
2001.
2001.
2001.
195.
179. | 64444444444444444444444444444444444444 | 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | -PERIOD 0017FL 13418 134 | 11
11
11
11
11
12
13
13
14
15
15
15
15
15
15
15
15
15
15
15
15
15 | | 92.
13. | 173
173
2339
1397
11997 | 4444444444
6000000000000000000000000000 | # HOURS
A | 4 0042 CE | 194.
207.
321. | | 115.
14.
5. | 178.
178.
198.
243.
240.
105. | 444444444
6666666666666666666666666666 | 88 88 88 88 88 88 88 88 88 88 88 88 88 | 1 044000 C | 176.
195.
201.
314. | | 129.
14. | ###################################### | 4444844444
60660000000000000000000000000 | 96. AT TIME
CR
INCHE
AC-F
TEDLS CU | 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1944. | | 156.
17. | 1177
2000
2000
1000
1000
1000
1000 | 444444444
60000000000000000000000000000 | S1 . | 48448FF88 | 191
191
284
286 | | | | | PEAK NUTFLOW | | | | | | | | 200 | | | | | | |--------|-------|-------|-------|-------|-------|---------|--------|--------|------------| | 495.0 | 495.0 | 435.0 | 475.1 | 495.1 | 495.1 | 4.55.1 | 403.0 | 4.55.0 | 454 | | 495.0 | 455.0 | 6.564 | 495.0 | 405.0 | 495.0 | 495.1 | 1.564 | 4.05.3 | 454 | | 495.3 | 406.0 | 0.964 | 496.0 | 6.504 | 495.3 | 495.8 | 4.05.4 | 405.3 | 457 | | 496.1 | 450.5 | 4.964 | 4964 | 497.2 | 497.6 | J. 8 7. | 498.6 | 4.99.4 | 336 | | 501.5 | 502.4 | BC3. | 503.d | 504.0 | 503.8 | 503.4 | 505.9 | 5.21.5 | 205 | | 501.7 | 501.3 | 501.0 | 90004 | 500.3 | 1.664 | 499.1 | 496.7 | 408.3 | 6.1.5 | | 4.07.6 | 467.3 | 497.1 | 496,8 | 4964 | 4.964 | 496,3 | 496.1 | 496.0 | 454 | | 495.8 | 455.7 | 992,6 | 495.5 | 495.4 | 495.3 | 495.3 | 455.2 | 495.2 | 407 | | 495.1 | 445.1 | 1.654 | 495.1 | 495.1 | 495.1 | 495.1 | 4.95.1 | 4.35.1 | 454 | | 495.0 | 0.554 | 495.0 | 495.0 | 495.0 | 495.0 | 495.0 | 495.0 | 495.0 | 453 | | URS | |---------| | A HOUR | | 45.30 | | AT TIME | | _ | | 23587 | | 15 | | JUTFLOW | | PEAK | | | PEAK | 6-HCUR | 24-HOUR | 72-HCLR | TCTAL VCLLIIE | | |------------|--------|--------|---------|---------|---------------|--| | CFS | 23587. | 20638. | 10322, | 3726. | 268541. | | | CHS | 668. | 584. | 292. | 106. | 7664. | | | INCHES | | 9,07 | 18,15 | 19.66 | 19.63 | | | I | | 230,45 | 461,02 | 499.31 | 11.654 | | | AC-FT | | 10234. | 20473 | 22173, | 22153 | | | THULS CU M | | 12623 | 25253. | 2735C. | 21375 | | **** **** ********* ***** *** 0) **၁**) 0 # PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FORMULTIPLE PLAN-RATIO ECCPENT COMPUTATIONS FLOW AND STORAGE (END (CURIC METERS PER SECOND) AREA IN SOUARE MILES (SQUARE KILEMETERS) | OPERATION | STATION | ARFA | PLAY | RATIO 1 | RATIO 2 | RATIOS API | PLIED TO FL
RATIO 4 | DWS
RATIO 5 | RATIO 6 | RATIC 7 | RATIO & | |---------------|----------------------------
---------------------------|------------|------------------|-------------------|-------------------|------------------------|---|-------------------|--------------------|---| | | | | | 02.0 | 12.0 | 0.22 | 22.0 | • | 62.0 | 0.0 | 7.00 | | HYDROGRAPH AT | BSN-1 | (16.22(92) | ~ ~ | 906. | 951, 26,94)(| 997, | 25.51)(| 30.79)(| 1133, | 2265. | 453C. | | HYORGGRAPH AT | BSN-2 | BSN-2 6.02
(26732,91) | ~~ | 1320. | 1386. | 1452. | 1518. | 1564. | 1649. | 3295. | 1 1320, 1380, 1452, 1518, 1564, 1649, 3295, 6598, (37,37)(39,23)(41,10)(42,97)(44,84)(40,71)(53,42)(180,83)(| | 2 COMBINED | 306.5 10.01
(26732.71) | 10.01 | ~ ~ | 2214, 62,68)(| 2324. | 2435, | 2946.
72,08)(| 2656. | 2767.
78.35)(| 5534.
156.701 | 11066. | | knuten to | MINGRK 10.01
(26732.91) | 10.01 | ٽ | 2232.
63.21)(| 2344. | 2455,
69,53)(| 2547. | 2647. | 2754. | 5533.
156.67)(| 11157. | | НУОРОСКАРН АТ | 85N-3 5+49
(26732-91) | 5.49 | س ّ | 1294, | 1361, 38,53)(| 1426, | 1490. | 1555. | 1620, | 3246. | \$44C. | | 2 CU.BINED | 169,5 | 169.5 15.90
(26722.31) | ~~ | 3528,
99.91){ | 3705. | 3891, 109,89)(| 4637. | 4262, | 4374. | 8773.
246.41)(| 17637, | | ROUTED TO | LOWC9K 15.90 | 15.90 | ~ ~ | 3513. | 3685. | 3862.
109,36)(| 4629. | 4179, | 4331, | 874C.
241.5C){ | 17628. | | НУЭКЛСКАРН АТ | BSN-4 5.26
(26732.31) | 9.26 | ٿ | 1226, | 1287, 36,45)(| 1349, 38,19)(| 1410, | 1471. | 1533, | 3C65. | 613C.
173.55)(| | 2 CUMBINED | 23 (26 | 23 21.16 (26722.91) | ~ ~ | 4694. | 4925.
139,45}(| 5161. | 5387, | 5550.
158.45)(| 5807.
164,44)[| 321-1011 | 1 LE : 949 | | ROUTES TO | DAM (26 | DAM 21.16
(26732.91) | ~~ | 4679, | 4915. | 5153, | 5384, | 56C7.
158.77)(| 2835.
165,24)[| 11656.
331.26)(| 23547, | # PLAN 1 STATION MIDCAK | TIME | Ē | 'n | 45,00 | Š | Š | Š | ٠, | Š | 3 | |------|-----------|------------|-------|-----|-----|-----|-----|-------|------| | AXIM | STAGE, F? | • 009
• | ů | 000 | ů | ů | ပ္ပ | C 2 . | C3• | | ξ | FLUW, CFS | 2232 | 4.4 | 453 | 547 | 547 | 754 | 5 | 157 | | | Ξ | 7 | 0,21 | 2 | ~ | 7 | 7 | Š | 1.00 | # PLAN 1 STATION LCHCRK | 71r | そして S | | |------------|-----------|---| | MAXIFUP | STAGE, FT | | | MJ.41 XVI. | FLIIWACES | | | | PATIL | • | ħ | ت | ت | Ü | C | 47.00 | O | ບ | | |-----|-----|-----|-----|-------|-----|-----|--| | 25 | 5 | 5 | 5 | 501.8 | C3 | çş. | | | 685 | 842 | 029 | 179 | 4331. | 740 | 628 | | | ? | ~ | 7 | ~ | 0,25 | S | 2 | | # SUMMARY OF DAM SAFETY ANALYSIS | | 7117
7117
7117
700000000000000000000000 | • | |--------------------------------------|--|-----------| | TCP OF DAM
\$70.25
264
5413 | TIME OF HAX OUTFLOW HOURS 45.00 45.0 | 20.00 | | | # TCP TCP + TCP + TCP 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 | > | | SPILLWAY CREST 495.00 178. | MAD ULT FLOW CONTRICT FOR S 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 | | | INITIAL VALUE
495.00
178. | NAXINUM
STARACE
2017
2017
2017
2017 | * * * * * | | INITIAL
495
1 | MAXIMUM
DEPTH
0.00
0.00
0.00
0.18
1.65 | - · | | ELEVATION
Storage
Outflow | PESENCIA
F. S. FLEV
499.77
499.77
500.03
500.03
500.43
500.43 | ; · · · · | | PLAN 1 | AT 000000000000000000000000000000000000 | : > = 7 | | PLAN | | | APPENDIX D STABILITY COMPUTATIONS SUMMIT STREET DAM CROSS SECTION BASID ON 1916 INSPECTION REPORT # SUMMIT STREET DAM STRUCTURAL STABILITY ANALYSIS CONDITIONS - 1. Normal Conditions; Reservoir level 3 feet below spillway crest. - 2. Same Conditions as No. 1 plus ice load of 5,000 pounds per linear foot. - 3. Flood of record; water surface 4.1 feet above spillway crest - 4. 1/2 PMF flood flow; water surface 6.9 feet above
spillway crest. - 5. PMF flood flow; water surface 9.0 feet above spillway crest. - 6. Normal conditions with seismic coefficient of 0.10. # STABILITY ANALYSIS PROGRAM - HORK SHEET | INPUT ENTRY | | | ANALYS | IS CONDI | TION | | | |--|----|----------|-------------|----------|-------|-------|-------| | Unit Weight of Dam (K/ft ³) | 0 | 0.135 | 0,135 | 0.135 | 0,135 | 0.35 | 6 | | Area of Segment No. 1 (ft ²) | 1 | 12.5 | 12.5 | 17.5 | 12.5 | 1 | 12.5 | | Distance from Center of Gravity of Segment No. 1 to Downstream Toe (ft) | 2 | 13.8 | 13.8 | 13.8 | 138 | 13.8 | | | Area of Segment No. 2 (ft^2) | 3 | 26 Z.S | 767.5 | 762.5 | 7625 | 252.5 | 262. | | Distance from Center of Gravity of Segment No. 2 to Downstream Toe (ft) | 4 | 11.7 | 11,7 | 11,7 | 11.7 | 11.7 | 11.7 | | Area of Segment No. 3 (ft ²) | 5 | 57.7 | 57.7 | 57.7 | 57. 7 | 57.7 | 577 | | Distance from Center of Gravity of Segment No. 3 to Downstream Toe (ft) | 6 | 3, 7 | 3.7 | 3.7 | 3,7 | 3.7 | 3.7 | | Base Width of Dam (Total) (ft) | 7 | 18 | 18 | 18 | 18 | 18 | 18 | | Height of Dam (ft) | 8 | . 23 | 23 | 23 | 23 | 23 | 73 | | Ice Loading (K/L ft.) | 9 | | 5 | | | | | | Coefficient of Sliding | 10 | 0.55 | | .55 | .55 | ,65 | . چ ځ | | Unit Weight of Soil (K/ft ³) (deduct 18) | 11 | 0.055 | .055 | . C55 | ,055 | 055 | | | Active Soil Coefficient - Ka | 12 | 0,33 | 0,33 | .33 | .33 | .33 | 33 | | Passive Soil Coefficient - Kp | 13 | | | | | | | | Height of Water over Top of Dam or Spillway (ft) | 14 | | | 6.9 | 9.0 | 4.1 | | | Assume D
Height of Soil for Active Pressure (ft) | 15 | 15 | 15 | 15 | 15 | 15 | 5 | | Height of Soil for Passive Pressure (ft) | | | | | | | 1 | | Height of Water in Tailrace Channel (ft) | 17 | | | | | | | | Weight of Water (K/ft ³) | 18 | 0.0624 | .0624 | 0624 | 0624 | 1530. | 362- | | Area of Segment No. 4 (ft ²) | 19 | • | | Į | | | | | Distance from Center of Gravity of
Segment No. 4 to Downstream Toe (ft) | 20 | بدف | | | | | | | Height of Ice Load or Active Water (ft) (does not include 14) | 46 | ZO | 30 | 23 | 23 | 23 | 30 | | Seismic Coefficient (g) | 50 | | | | } | Ì | al. | | RESULTS OF ANALYSIS | | | | | | | t | | Factor of Safety vs. Overturning | _ | - | | _ | | | + | | Distance From Toe to Resultant | | <u> </u> | - | | - | | 1 | | Factor of Safety vs. Sliding | | 1.70 | 1.26 | 0.87 | 0.78 | 1.01 | 121 | APPENDIX E REFERENCES # APPENDIX REFERENCES - 1) J.S. Bixley, Correspondence dated November 27, 1939 to T.F. Farrell. - 2) M.G. Cline and R.L. Marshall, <u>Soils of New York Landscapes</u> Information Bulletin 119, New York State College of Agriculture and Life Sciences, Cornell University, August 1977. - 3) B.B. Eissler, Low-Flow Frequency Analysis of Streams in New York Bulletin 74, U.S. Geological Survey, 1979. - 4) T.S. George and R.S. Taylor; <u>Lower Hudson River Basin Hydrologic Flood</u> <u>Routing Model</u>; for the Department of the Army, New York District, Corps of Engineers; Water Resources Engineers Inc., January 1977 - 5) H.W. King and E.F. Brater, <u>Handbook of Hydraulics</u>, 5th Edition, McGraw Hill, 1963. - 6) F.L. Robinson, W.N. Embree, and B. Dunn, <u>Floods in New York</u>, 1973 and 1974, Investigation Report RI-15, U.S. Geological Survey, 1976. ## U.S. Army Corps of Engineers: - 7) <u>HEC 1</u> Flood Hydrograph Package Dam Safety Version, September 1978. - 8) Engineering Manual 1110-2-1405; Flood Hydrograph Analyses and Computations, August 1959. - 9) U.S. Department of Agriculture, Soil Conservation Service; National Engineering Handbook; Section 4 Hydrology, August 1972. - 10) U.S. Department of Commerce; Weather Bureau: Hydrometerological Report No. 33: Seasonal Variation of the Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1,000 Square Miles and Durations of 6, 12, 24, and 48 Hours, April 1956. ### U.S. Geological Survey: - 11) Water Resources Data for New York 1968. - 12) Water Resources Data for New York 1973. - 13) Water Resources Data for New York 1974. - 14) Water Resources Data for New York Water Year 1975, Report NY-75-1. - 15) Water Resources Data for New York Water Year 1979; Report NY-79-1, Volume 1-Excluding Long Island. APPENDIX F DRAWINGS & RELATED INFORMATION # **COLUMBIA and GREENE COUNTIES** SUMMIT ST. DAM NY-847 FIELD MEASUREMENTS - 10/80 LEFT ABUTMENT @ DAM (NOTICE: After filling out one of these forms as completely as possible for each dam in your district, return it at once to the Conservation Commission, Albany.) STATE OF NEW YORK # CONSERVATION COMMISSION ALBANY 2.281 1074 LH | 1074 LT. DAM REPORT | |---| | June 23 191 6 | | Conservation Commission; | | Division of Inland Waters. | | GENTLEMEN: | | I have the honor to make the following report in relation to the structure known as | | the Reservoi Dam. Dam. | | This dam is situated upon the Claurach Creek | | in the Town of Carriach, Columbia County, | | about from the Village or City of Studies | | The distance stream from the dam, to the Budge on Hoghway | | is about 75 feet | | The dam is now owned by of youch Kitting Co. Shelmost Isly | | and was built in or about the year, and was extensively repaired or reconstructed | | during the year | | As it now stands, the spillway portion of this dam is built of | | and the other portions are built of JAAA JAAA (State whether of masoary, concrete, earth or timber with or without rock fill) | | As nearly as I can learn, the character of the foundation bed under the spillway portion | | of the dam is and under the remaining portions such | | foundation bed is Solid Rock. | (In the space below, make a third sketch showing the general plan of the dam, and its approximate position in relation to buildings or other conspicuous objects in the vicinity.) (In the space below, make one sketch showing the form and dimensions of a cross section through the spillway or waste-weir of this dam, and a second sketch showing the same information for a cross section through the other portion of the dam. Show particularly the greatest height of the dam above the stream hed, its thickness at the top, and thickness at the bottom, as nearly as you can learn.) Masonry abutment concrete | The total length of this dam isfcet. The spillway or waste- | |---| | weir portion, is aboutfeet long, and the crest of the spillway is | | about feet below the top of the dam. abut | | The number, size and location of discharge pipes, waste pipes or gates which may be used | | for drawing off the water from behind the dam, are as follows: 1, 5 pipe at | | night of spillway | | At the time of this inspection the water level above the dam was | | below the crest of the spillway. | | (State briefly, in the space below, whether, in your judgment, this dam is in good condition, or bad condition, describing particularly any leaks or cracks which you may have observed.) | | good condition | | 7 | | | | • | Reported by | | (Add-Iress-Street and number, P. O. Box or R. P. D. route) | | Thine beefelly | | (Name of Al C) | High Rock Knitting Co. Dam No. Permit Town of Claverack Columbia County November 27, 1939. Mr. T. F. Farrell Chief Engineer Albany, New York Dear Sir:- As ordered in your letter dated Nov. 20, an inspection was made on Nov. 24 of a dam located on Agawamuck branch of Claverack Creek in Village of Philmont. This dam is the middle one of three dams owned by High Rock Knitting Co. and is known as the Summit St. Lake dam. It is the same dam reported in my letter of Nov. 28, 1938, as the Louis Harder dam and noted as having an inadequate spillway. The High Rock Knitting Co. has been and is in receivership with Louis Harder of Meple Ave., Philmont, N.Y., designated by court as "owner in possession as trustee". This dam was built about eighty years ago and about sixty years ago it caused a similar flooding of Village of Philmont. Along about 1918 or 1922, the wooden decked spillway was removed and replaced with stone masonry. Majority opinion is that these repairs resulted in a higher crest of spillway. As an aftermath of the hurricane of September 1938, floods on Sept. 19-21 of that month caused the Summit St. Lake to overflow its northern share in two places causing damage to Village of Philmont strand sidewalks costing, according to Mayor Robert Hover about \$20,000 to repair. Trustee Harder does not want to lower the spillway. He says the High Rock Knitting Co. will dedicate a R.C.W. along northern shore for a combined dike and road at Lakeside Drive to block the natural flood relief spillway. This treatment might cause other complications. Mr. Harder believes the village should vote monies to build the dike and road and states that the High Rock Knitting Co. carries about half of the full assessments in the Village of Philmont. I am informed that the High Rock Knitting Co. has been in default on taxes continuously since 1933. T.F.F. 11/27/39 Mayor Robert Hover believes that by provisions of Chapter 948 of the Conservation Law, the State Superintendent of Public works is empowered to order the owner to lower crest of dam at owner's expense. In support of his belief he refers to Page 175 of #164 Miscellaneous Reports on Supreme Court Proceedings which I understand relates to a ruling in May 1937 by Justice MacNaught regarding dam which formed Lake Switzerland on Fottertown Creek branch of the Bushkill and which dam I believe was built in 1906 by one Vermilyes of Fleishmans, N.Y. Please keep me informed of the Department's action in the present case. . 2. Br. L. Shadic, C.E. (License #11814 P.E.) of Philmont, N.Y. made a report on the
Sept. 1938 flood for the Village of Philmont. He notes the following regarding Summit St. Lake dam:- (1) Drainage area = 22.75 sq. mi. (2) Dam about 24 ft. high. (3) Capacity=58,000,000 gals. Engr. Shadic states that these three conditions place the reservoir under jurisdiction and supervision of the New York State Department of Public works. Furthermore, as follows: - (4) Crest of Sept. 1938 flood at Elevation 499.49 U.S.G.S. datum. - (5) At flood crest, the two natural flood relief spillways had a combined cross sectional discharge area of 640 sq. ft. while the water flowin, over spillway had a discharge area of 810 sq. ft. with mean height of water over spillway of 5.89 ft. Spillway crest is not quite level. - (6) At the crest of flood, Ark St. carried 21% of total discharge. (7) Waterway under Summit St. bridge is 890 sq. ft. Note this. (8) Two artificial structures upstream failed during the flood after having exerted a ponding effect during beginning of flood. (9) Shore line higher than in 1922. ### Engineer Shadic recommends:- - (a) Lowering of spillway crest with temporary or automatic type of flashboards to retain present storage capacity except in times of emergency. - (b) Rock gorge below dam should be enlarged and smoothened and straightened. (c) Rebuild present sluice in dam to equal capacity of present flume and provide two gates. (d) Build corewall dike to Elevation 502.25 along northern shore of lake and anchored to rock. I am confirmed in my report of Nov. 28, 1938 that the spillway of Summit St. Lake dam is inadequate. Very truly yours, J. S. BIXBY CAH: ELT District Engineer